commit work for the day
Some checks failed
studiorailgun/Renderer/pipeline/head There was a failure building this commit

This commit is contained in:
austin 2024-12-06 22:40:08 -05:00
parent 9861ff4af6
commit 03729abc7b
9 changed files with 249 additions and 50 deletions

9
.vscode/launch.json vendored
View File

@ -9,7 +9,8 @@
"name": "Launch Current File",
"request": "launch",
"mainClass": "${file}",
"vmArgs": "-Xmx4G -Xms1024m -Djava.library.path=./shared-folder -XX:+UseZGC -XX:SoftMaxHeapSize=3G -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=\"./tmp/heap.hprof\""
"vmArgs": "-Xmx4G -Xms1024m -Djava.library.path=./shared-folder -XX:+UseZGC -XX:SoftMaxHeapSize=3G -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=\"./tmp/heap.hprof\"",
"preLaunchTask": "Install Native Lib"
},
{
"type": "java",
@ -17,7 +18,8 @@
"request": "launch",
"mainClass": "electrosphere.engine.Main",
"vmArgs": "-Xmx4G -Xms1024m -Djava.library.path=./shared-folder -XX:+UseZGC -XX:SoftMaxHeapSize=3G -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=\"./tmp/heap.hprof\"",
"projectName": "Renderer"
"projectName": "Renderer",
"preLaunchTask": "Install Native Lib"
},
{
"type": "java",
@ -25,7 +27,8 @@
"request": "launch",
"mainClass": "electrosphere.engine.Main",
"vmArgs": "-Xmx4G -Xms1024m -Djava.library.path=./shared-folder -XX:+UseZGC -XX:SoftMaxHeapSize=3G -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=\"./tmp/heap.hprof\" -javaagent:./lwjglx-debug-1.0.0.jar=t;o=trace.log",
"projectName": "Renderer"
"projectName": "Renderer",
"preLaunchTask": "Install Native Lib"
},
{
"type": "java",

11
.vscode/tasks.json vendored
View File

@ -1,6 +1,17 @@
{
"version": "2.0.0",
"tasks": [
{
"type": "shell",
"label": "Install Native Lib",
"command": "cp ./out/build/libStormEngine.* ./shared-folder",
"group": "build",
"detail": "Installs the native lib locally",
"dependsOn": ["CMake: build",]
},
{
"type": "cmake",
"label": "CMake: build",

View File

@ -1,3 +1,3 @@
#maven.buildNumber.plugin properties file
#Fri Dec 06 19:51:41 EST 2024
buildNumber=579
#Fri Dec 06 21:26:11 EST 2024
buildNumber=600

View File

@ -6,18 +6,18 @@
#ifndef CHUNK_H
#define CHUNK_H
#define MIN_VALUE 0.0
#define MAX_VALUE 1.0
#define MIN_FLUID_VALUE 0.0f
#define MAX_FLUID_VALUE 1.0f
/**
* The cutoff value for the bounds array
*/
#define BOUND_CUTOFF_VALUE 0.0
#define BOUND_CUTOFF_VALUE 0.0f
/**
* Maximum value of bounds array for it to be considered a blocker
*/
#define BOUND_MAX_VALUE 1.0
#define BOUND_MAX_VALUE 1.0f
/**
* The dimension of a single chunk's array

View File

@ -7,6 +7,15 @@
#define FLUID_CELLULAR_DIFFUSE_RATE 0.001
#define FLUID_CELLULAR_DIFFUSE_RATE2 0.1
#define FLUID_CELLULAR_KERNEL_SIZE 4
int fluid_cellular_kernel_x[FLUID_CELLULAR_KERNEL_SIZE] = {
-1, 0, 1, 0
};
int fluid_cellular_kernel_z[FLUID_CELLULAR_KERNEL_SIZE] = {
0, -1, 0, 1
};
/**
* Simulates the cellular chunk queue
@ -17,52 +26,99 @@ LIBRARY_API void fluid_cellular_simulate(Environment * environment){
Chunk ** chunks = environment->queue.cellularQueue;
int chunkCount = stbds_arrlen(chunks);
for(int i = 0; i < chunkCount; i++){
Chunk * currentChunk = chunks[i];
for(int cellIndex = 0; cellIndex < chunkCount; cellIndex++){
Chunk * currentChunk = chunks[cellIndex];
//simulate here
float *d = currentChunk->d[CENTER_LOC];
float * bounds = currentChunk->bounds[CENTER_LOC];
float density;
int transferred = 0;
// printf("%f %d %d %d\n",bounds[IX(1,0,1)],currentChunk->x,currentChunk->y,currentChunk->z);
// printf("%f %f %f %d %d %d\n",bounds[IX(0,1,1)],bounds[IX(1,0,1)],bounds[IX(1,1,0)],currentChunk->x,currentChunk->y,currentChunk->z);
for(int x = 1; x < DIM-1; x++){
for(int y = 1; y < DIM-1; y++){
for(int z = 1; z < DIM-1; z++){
//diffuse density
d[IX(x,y,z)] = d[IX(x,y,z)];
if(x > 1){
d[IX(x,y,z)] += (d[IX(x-1,y,z)] - d[IX(x,y,z)]) * FLUID_CELLULAR_DIFFUSE_RATE;
}
if(x < DIM-2){
d[IX(x,y,z)] += (d[IX(x+1,y,z)] - d[IX(x,y,z)]) * FLUID_CELLULAR_DIFFUSE_RATE;
}
if(y > 1){
d[IX(x,y,z)] += (d[IX(x,y-1,z)] - d[IX(x,y,z)]) * FLUID_CELLULAR_DIFFUSE_RATE;
}
if(y < DIM-2){
d[IX(x,y,z)] += (d[IX(x,y+1,z)] - d[IX(x,y,z)]) * FLUID_CELLULAR_DIFFUSE_RATE;
}
if(z > 1){
d[IX(x,y,z)] += (d[IX(x,y,z-1)] - d[IX(x,y,z)]) * FLUID_CELLULAR_DIFFUSE_RATE;
}
if(z < DIM-2){
d[IX(x,y,z)] += (d[IX(x,y,z+1)] - d[IX(x,y,z)]) * FLUID_CELLULAR_DIFFUSE_RATE;
}
if(d[IX(x,y,z)] <= 0){
// d[IX(x,y,z)] = d[IX(x,y,z)];
// if(x > 1){
// d[IX(x,y,z)] += (d[IX(x-1,y,z)] - d[IX(x,y,z)]) * FLUID_CELLULAR_DIFFUSE_RATE;
// }
// if(x < DIM-2){
// d[IX(x,y,z)] += (d[IX(x+1,y,z)] - d[IX(x,y,z)]) * FLUID_CELLULAR_DIFFUSE_RATE;
// }
// if(y > 1){
// d[IX(x,y,z)] += (d[IX(x,y-1,z)] - d[IX(x,y,z)]) * FLUID_CELLULAR_DIFFUSE_RATE;
// }
// if(y < DIM-2){
// d[IX(x,y,z)] += (d[IX(x,y+1,z)] - d[IX(x,y,z)]) * FLUID_CELLULAR_DIFFUSE_RATE;
// }
// if(z > 1){
// d[IX(x,y,z)] += (d[IX(x,y,z-1)] - d[IX(x,y,z)]) * FLUID_CELLULAR_DIFFUSE_RATE;
// }
// if(z < DIM-2){
// d[IX(x,y,z)] += (d[IX(x,y,z+1)] - d[IX(x,y,z)]) * FLUID_CELLULAR_DIFFUSE_RATE;
// }
// float boundVal = bounds[IX(x,y,z)];
// if(boundVal > BOUND_CUTOFF_VALUE){
// continue;
// }
// for(int j = 0; j < FLUID_CELLULAR_KERNEL_SIZE; j++){
// density = d[IX(x,y,z)];
// int nX = x + fluid_cellular_kernel_x[j];
// int nZ = z + fluid_cellular_kernel_z[j];
// float nDensity = d[IX(nX,y,nZ)];
// if(nDensity > MIN_FLUID_VALUE){
// float lateralDiff = nDensity - density;
// if(lateralDiff > 0){
// float maxIntake = MAX_FLUID_VALUE - density;
// if(maxIntake > 0){
// float transferLateral;
// transferLateral = lateralDiff;
// if(nDensity < transferLateral){
// transferLateral = nDensity;
// }
// if(maxIntake < transferLateral){
// transferLateral = maxIntake;
// }
// if(transferLateral > FLUID_CELLULAR_DIFFUSE_RATE2){
// transferLateral = FLUID_CELLULAR_DIFFUSE_RATE2;
// }
// d[IX(nX,y,nZ)] -= transferLateral;
// d[IX(x,y,z)] += transferLateral;
// // if(d[IX(nX,y,nZ)] < MIN_FLUID_VALUE){
// // d[IX(x,y,z)] += d[IX(nX,y,nZ)];
// // d[IX(nX,y,nZ)] = MIN_FLUID_VALUE;
// // }
// }
// }
// }
// }
if(d[IX(x,y,z)] <= MIN_FLUID_VALUE){
} else {
//transfer straight down
if(bounds[IX(x,y-1,z)] <= BOUND_CUTOFF_VALUE){
float deltaLower = MAX_VALUE - d[IX(x,y-1,z)];
if(deltaLower > 0){
float transferLower;
if(d[IX(x,y,z)] >= deltaLower){
transferLower = deltaLower;
} else {
transferLower = d[IX(x,y,z)];
{
float nBound = bounds[IX(x,y-1,z)];
if(nBound <= BOUND_CUTOFF_VALUE){
if(d[IX(x,y-1,z)] <= MIN_FLUID_VALUE){
d[IX(x,y-1,z)] = d[IX(x,y,z)];
d[IX(x,y,z)] = MIN_FLUID_VALUE;
continue;
}
}
}
//transfer laterally
for(int j = 0; j < FLUID_CELLULAR_KERNEL_SIZE; j++){
int nX = x + fluid_cellular_kernel_x[j];
int nZ = z + fluid_cellular_kernel_z[j];
if(bounds[IX(nX,y,nZ)] <= BOUND_CUTOFF_VALUE){
if(d[IX(nX,y,nZ)] <= MIN_FLUID_VALUE){
printf("%d %d %d -> %d %d %d \n",x,y,z,nX,y,nZ);
d[IX(nX,y,nZ)] = d[IX(x,y,z)];
d[IX(x,y,z)] = MIN_FLUID_VALUE;
break;
}
d[IX(x,y,z)] -= transferLower;
d[IX(x,y-1,z)] += transferLower;
}
}
}

View File

@ -29,10 +29,10 @@ void addDensity(
environment->densityTracking.newDensity = environment->densityTracking.newDensity + dt * s[i];
environment->densityTracking.existingDensity = environment->densityTracking.existingDensity + x[i];
x[i] += dt*s[i];
if(x[i] < MIN_VALUE){
x[i] = MIN_VALUE;
} else if(x[i] > MAX_VALUE){
x[i] = MAX_VALUE;
if(x[i] < MIN_FLUID_VALUE){
x[i] = MIN_FLUID_VALUE;
} else if(x[i] > MAX_FLUID_VALUE){
x[i] = MAX_FLUID_VALUE;
}
}
}

View File

@ -21,6 +21,9 @@ public class ScriptClientVoxelUtils {
*/
static final float EDIT_INCREMENT = 0.1f;
//vertical offset from cursor position to spawn things at
static final Vector3d cursorVerticalOffset = new Vector3d(0,0.05,0);
/**
* Applies the current voxel palette where the player's cursor is looking
*/
@ -65,15 +68,16 @@ public class ScriptClientVoxelUtils {
if(cursorPos == null){
cursorPos = new Vector3d(centerPos).add(new Vector3d(eyePos).mul(-CollisionEngine.DEFAULT_INTERACT_DISTANCE));
}
cursorPos = cursorPos.add(cursorVerticalOffset);
Vector3i worldPos = new Vector3i(
(int)(cursorPos.x / ServerTerrainChunk.CHUNK_DIMENSION),
(int)(cursorPos.y / ServerTerrainChunk.CHUNK_DIMENSION),
(int)(cursorPos.z / ServerTerrainChunk.CHUNK_DIMENSION)
);
Vector3i voxelPos = new Vector3i(
(int)(cursorPos.x % ServerTerrainChunk.CHUNK_DIMENSION),
(int)(cursorPos.y % ServerTerrainChunk.CHUNK_DIMENSION),
(int)(cursorPos.z % ServerTerrainChunk.CHUNK_DIMENSION)
(int)(Math.ceil(cursorPos.x) % ServerTerrainChunk.CHUNK_DIMENSION),
(int)(Math.ceil(cursorPos.y) % ServerTerrainChunk.CHUNK_DIMENSION),
(int)(Math.ceil(cursorPos.z) % ServerTerrainChunk.CHUNK_DIMENSION)
);
Globals.realmManager.first().getServerWorldData().getServerFluidManager().deformFluidAtLocationToValue(worldPos, voxelPos, 1.0f, 0);
}

View File

@ -863,6 +863,30 @@ int fluid_queue_boundsolver_tests(){
rVal += checkBounds(queue[i],kernelx[i],kernely[i],kernelz[i],0);
}
{
int borderVal = queue[0]->d[CENTER_LOC][IX(1,1,DIM-2)];
int containedVal = queue[1]->d[CENTER_LOC][IX(1,1,0)];
rVal += assertEquals(borderVal,containedVal,"chunk 0,0,1 should contain border values from 0,0,0 --- %d %d\n");
}
{
int borderVal = queue[0]->d[CENTER_LOC][IX(1,1,DIM-1)];
int containedVal = queue[1]->d[CENTER_LOC][IX(1,1,1)];
rVal += assertEquals(borderVal,containedVal,"chunk 0,0,0 should contain border values from 0,0,1 --- %d %d\n");
}
{
int borderVal = queue[0]->d[CENTER_LOC][IX(DIM-2,1,1)];
int containedVal = queue[9]->d[CENTER_LOC][IX(0,1,1)];
rVal += assertEquals(borderVal,containedVal,"chunk 1,0,0 should contain border values from 0,0,0 --- %d %d\n");
}
{
int borderVal = queue[0]->d[CENTER_LOC][IX(DIM-1,1,1)];
int containedVal = queue[9]->d[CENTER_LOC][IX(1,1,1)];
rVal += assertEquals(borderVal,containedVal,"chunk 0,0,0 should contain border values from 1,0,0 --- %d %d\n");
}
//cleanup test

View File

@ -0,0 +1,101 @@
#include <stdio.h>
#include <stdlib.h>
#include "stb/stb_ds.h"
#include "fluid/queue/chunk.h"
#include "fluid/queue/sparse.h"
#include "fluid/queue/chunkmask.h"
#include "fluid/env/utilities.h"
#include "fluid/queue/islandsolver.h"
#include "fluid/queue/boundsolver.h"
#include "fluid/dispatch/dispatcher.h"
#include "fluid/sim/simulator.h"
#include "../../../util/test.h"
#include "../../../util/chunk_test_utils.h"
#define CELLULAR_TEST_PLACE_VAL 0.1f
int fluid_sim_cellular_cellular_tests_kernelx[27] = {
0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2, 2,
};
int fluid_sim_cellular_cellular_tests_kernely[27] = {
0, 0, 0, 1, 1, 1, 2, 2, 2,
0, 0, 0, 1, 1, 1, 2, 2, 2,
0, 0, 0, 1, 1, 1, 2, 2, 2,
};
int fluid_sim_cellular_cellular_tests_kernelz[27] = {
0, 1, 2, 0, 1, 2, 0, 1, 2,
0, 1, 2, 0, 1, 2, 0, 1, 2,
0, 1, 2, 0, 1, 2, 0, 1, 2,
};
int fluid_sim_cellular_bounds_tests(){
int rVal = 0;
Environment * env = fluid_environment_create();
int chunkCount = 27;
Chunk ** queue = NULL;
for(int i = 0; i < chunkCount; i++){
arrput(queue,chunk_create(
fluid_sim_cellular_cellular_tests_kernelx[i],
fluid_sim_cellular_cellular_tests_kernely[i],
fluid_sim_cellular_cellular_tests_kernelz[i]
));
}
//link neighbors
chunk_link_neighbors(queue);
//fill them with values
for(int i = 0; i < chunkCount; i++){
chunk_fill(queue[i],0);
}
//set border of 0,0,0 to push a value into z
queue[0]->d[CENTER_LOC][IX(1,1,DIM-2)] = CELLULAR_TEST_PLACE_VAL;
//call bounds setter
fluid_solve_bounds(chunkCount,queue,env);
{
int borderVal = queue[0]->d[CENTER_LOC][IX(1,1,DIM-2)];
int transferedVal = queue[1]->d[CENTER_LOC][IX(1,1,0)];
rVal += assertEqualsFloat(borderVal,CELLULAR_TEST_PLACE_VAL,"Border value was overwritten! -- %f %f \n");
rVal += assertEqualsFloat(transferedVal,CELLULAR_TEST_PLACE_VAL,"Value want not transfered from border! -- %f %f \n");
}
//dispatch and simulate
fluid_dispatch(chunkCount,queue,env);
fluid_simulate(env);
//assert that the density moved
{
int borderVal = queue[0]->d[CENTER_LOC][IX(1,1,DIM-2)];
int orderBorderVal = queue[0]->d[CENTER_LOC][IX(1,1,DIM-3)];
int transferedVal = queue[1]->d[CENTER_LOC][IX(1,1,0)];
rVal += assertEqualsFloat(borderVal,MIN_FLUID_VALUE,"Border value has not changed! -- %f %f \n");
rVal += assertEqualsFloat(orderBorderVal,CELLULAR_TEST_PLACE_VAL,"Border value has not moved! -- %f %f \n");
rVal += assertEqualsFloat(transferedVal,CELLULAR_TEST_PLACE_VAL,"Value want not transfered from border! -- %f %f \n");
}
return rVal;
}
int fluid_sim_cellular_cellular_tests(int argc, char **argv){
int rVal = 0;
rVal += fluid_sim_cellular_bounds_tests();
return rVal;
}