fully recursive multigrid solver

This commit is contained in:
austin 2024-12-11 18:16:41 -05:00
parent e24332df83
commit 1d75ad9af9
4 changed files with 373 additions and 84 deletions

View File

@ -14,57 +14,6 @@ static inline int solver_gauss_seidel_get_index(int x, int y, int z, int N){
return (x + (N * y) + (N * N * z));
}
/**
* Relaxes an ODE matrix by 1 iteration of gauss seidel parallelized
* @param phi The phi array
* @param phi0 The phi array from the last frame
* @param a The a const
* @param c The c const
* @param gridDim The dimensions of the grid
*/
static inline void solver_gauss_seidel_iterate_parallel(float * phi, float * phi0, float a, float c, int gridDim){
int i, j, k, l, m;
__m256 aScalar = _mm256_set1_ps(a);
__m256 cScalar = _mm256_set1_ps(c);
//transform u direction
for(k=1; k<gridDim-1; k++){
for(j=1; j<gridDim-1; j++){
int n = 0;
//solve as much as possible vectorized
for(i = 1; i < gridDim-1; i=i+8){
__m256 vector = _mm256_loadu_ps(&phi[solver_gauss_seidel_get_index(i-1,j,k,gridDim)]);
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&phi[solver_gauss_seidel_get_index(i+1,j,k,gridDim)]));
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&phi[solver_gauss_seidel_get_index(i,j-1,k,gridDim)]));
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&phi[solver_gauss_seidel_get_index(i,j+1,k,gridDim)]));
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&phi[solver_gauss_seidel_get_index(i,j,k-1,gridDim)]));
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&phi[solver_gauss_seidel_get_index(i,j,k+1,gridDim)]));
vector = _mm256_mul_ps(vector,aScalar);
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&phi0[solver_gauss_seidel_get_index(i,j,k,gridDim)]));
vector = _mm256_div_ps(vector,cScalar);
_mm256_storeu_ps(&phi[solver_gauss_seidel_get_index(i,j,k,gridDim)],vector);
}
//If there is any leftover, perform manual solving
if(i>gridDim-1){
for(i=i-8; i < gridDim-1; i++){
phi[solver_gauss_seidel_get_index(i,j,k,gridDim)] =
(
phi0[solver_gauss_seidel_get_index(i,j,k,gridDim)] +
a * (
phi[solver_gauss_seidel_get_index(i-1,j,k,gridDim)]+
phi[solver_gauss_seidel_get_index(i+1,j,k,gridDim)]+
phi[solver_gauss_seidel_get_index(i,j-1,k,gridDim)]+
phi[solver_gauss_seidel_get_index(i,j+1,k,gridDim)]+
phi[solver_gauss_seidel_get_index(i,j,k-1,gridDim)]+
phi[solver_gauss_seidel_get_index(i,j,k+1,gridDim)]
)
) / c;
}
}
}
}
}
/**
* Relaxes an ODE matrix by 1 iteration of gauss seidel serially
@ -77,9 +26,6 @@ static inline void solver_gauss_seidel_iterate_parallel(float * phi, float * phi
static inline void solver_gauss_seidel_iterate_serial(float * phi, float * phi0, float a, float c, int gridDim){
int i, j, k, l, m;
__m256 aScalar = _mm256_set1_ps(a);
__m256 cScalar = _mm256_set1_ps(c);
//transform u direction
for(k=1; k<gridDim-1; k++){
for(j=1; j<gridDim-1; j++){
@ -103,6 +49,99 @@ static inline void solver_gauss_seidel_iterate_serial(float * phi, float * phi0,
}
}
/**
* Relaxes an ODE matrix by 1 iteration of gauss seidel parallelized
* @param phi The phi array
* @param phi0 The phi array from the last frame
* @param a The a const
* @param c The c const
* @param gridDim The dimensions of the grid
*/
static inline void solver_gauss_seidel_iterate_parallel(float * phi, float * phi0, float a, float c, int gridDim){
int i, j, k, l, m;
if(gridDim >= 10){
__m256 aScalar = _mm256_set1_ps(a);
__m256 cScalar = _mm256_set1_ps(c);
//transform u direction
for(k=1; k<gridDim-1; k++){
for(j=1; j<gridDim-1; j++){
int n = 0;
//solve as much as possible vectorized
for(i = 1; i < gridDim-1; i=i+8){
__m256 vector = _mm256_loadu_ps(&phi[solver_gauss_seidel_get_index(i-1,j,k,gridDim)]);
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&phi[solver_gauss_seidel_get_index(i+1,j,k,gridDim)]));
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&phi[solver_gauss_seidel_get_index(i,j-1,k,gridDim)]));
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&phi[solver_gauss_seidel_get_index(i,j+1,k,gridDim)]));
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&phi[solver_gauss_seidel_get_index(i,j,k-1,gridDim)]));
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&phi[solver_gauss_seidel_get_index(i,j,k+1,gridDim)]));
vector = _mm256_mul_ps(vector,aScalar);
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&phi0[solver_gauss_seidel_get_index(i,j,k,gridDim)]));
vector = _mm256_div_ps(vector,cScalar);
_mm256_storeu_ps(&phi[solver_gauss_seidel_get_index(i,j,k,gridDim)],vector);
}
//If there is any leftover, perform manual solving
if(i>gridDim-1){
for(i=i-8; i < gridDim-1; i++){
phi[solver_gauss_seidel_get_index(i,j,k,gridDim)] =
(
phi0[solver_gauss_seidel_get_index(i,j,k,gridDim)] +
a * (
phi[solver_gauss_seidel_get_index(i-1,j,k,gridDim)]+
phi[solver_gauss_seidel_get_index(i+1,j,k,gridDim)]+
phi[solver_gauss_seidel_get_index(i,j-1,k,gridDim)]+
phi[solver_gauss_seidel_get_index(i,j+1,k,gridDim)]+
phi[solver_gauss_seidel_get_index(i,j,k-1,gridDim)]+
phi[solver_gauss_seidel_get_index(i,j,k+1,gridDim)]
)
) / c;
}
}
}
}
} else if(gridDim >= 6){
__m128 aScalar = _mm_set1_ps(a);
__m128 cScalar = _mm_set1_ps(c);
//transform u direction
for(k=1; k<gridDim-1; k++){
for(j=1; j<gridDim-1; j++){
int n = 0;
//solve as much as possible vectorized
for(i = 1; i < gridDim-1; i=i+8){
__m128 vector = _mm_loadu_ps(&phi[solver_gauss_seidel_get_index(i-1,j,k,gridDim)]);
vector = _mm_add_ps(vector,_mm_loadu_ps(&phi[solver_gauss_seidel_get_index(i+1,j,k,gridDim)]));
vector = _mm_add_ps(vector,_mm_loadu_ps(&phi[solver_gauss_seidel_get_index(i,j-1,k,gridDim)]));
vector = _mm_add_ps(vector,_mm_loadu_ps(&phi[solver_gauss_seidel_get_index(i,j+1,k,gridDim)]));
vector = _mm_add_ps(vector,_mm_loadu_ps(&phi[solver_gauss_seidel_get_index(i,j,k-1,gridDim)]));
vector = _mm_add_ps(vector,_mm_loadu_ps(&phi[solver_gauss_seidel_get_index(i,j,k+1,gridDim)]));
vector = _mm_mul_ps(vector,aScalar);
vector = _mm_add_ps(vector,_mm_loadu_ps(&phi0[solver_gauss_seidel_get_index(i,j,k,gridDim)]));
vector = _mm_div_ps(vector,cScalar);
_mm_storeu_ps(&phi[solver_gauss_seidel_get_index(i,j,k,gridDim)],vector);
}
//If there is any leftover, perform manual solving
if(i>gridDim-1){
for(i=i-8; i < gridDim-1; i++){
phi[solver_gauss_seidel_get_index(i,j,k,gridDim)] =
(
phi0[solver_gauss_seidel_get_index(i,j,k,gridDim)] +
a * (
phi[solver_gauss_seidel_get_index(i-1,j,k,gridDim)]+
phi[solver_gauss_seidel_get_index(i+1,j,k,gridDim)]+
phi[solver_gauss_seidel_get_index(i,j-1,k,gridDim)]+
phi[solver_gauss_seidel_get_index(i,j+1,k,gridDim)]+
phi[solver_gauss_seidel_get_index(i,j,k-1,gridDim)]+
phi[solver_gauss_seidel_get_index(i,j,k+1,gridDim)]
)
) / c;
}
}
}
}
} else {
solver_gauss_seidel_iterate_serial(phi,phi0,a,c,gridDim);
}
}
#endif

View File

@ -15,7 +15,17 @@
* @param c The c const
* @return The residual
*/
float solver_multigrid_iterate(float * phi, float * phi0, float a, float c);
float solver_multigrid_iterate_serial(float * phi, float * phi0, float a, float c);
/**
* Relaxes an ODE matrix by 1 iteration of multigrid method
* @param phi The phi array
* @param phi0 The phi array from the last frame
* @param a The a const
* @param c The c const
* @return The residual
*/
float solver_multigrid_iterate_parallel(float * phi, float * phi0, float a, float c);

View File

@ -181,7 +181,7 @@ LIBRARY_API void fluid_grid2_solveProjection(
float residual = 1;
int iteration = 0;
while(iteration < FLUID_GRID2_LINEARSOLVERTIMES && (residual > FLUID_GRID2_PROJECTION_CONVERGENCE_TOLERANCE || residual < -FLUID_GRID2_PROJECTION_CONVERGENCE_TOLERANCE)){
residual = solver_multigrid_iterate(p,div,a,c);
residual = solver_multigrid_iterate_serial(p,div,a,c);
fluid_grid2_set_bounds(FLUID_GRID2_BOUND_NO_DIR,p);
iteration++;
}

View File

@ -18,6 +18,7 @@ static int halfDim = ((DIM - 2) / 2) + 2;
* Dimension of the quarter resolution grid
*/
static int quarterDim = ((DIM - 2) / 4) + 2;
static int LOWEST_DIM = ((DIM - 2) / 4) + 2;
/**
* The full resolution grids
@ -38,10 +39,21 @@ static float * quarterGridPhi = NULL;
static float * quarterGridPhi0 = NULL;
static float * quarterGridResidual = NULL;
/**
* The eighth resolution grids
*/
static float * eighthGridPhi = NULL;
static float * eighthGridPhi0 = NULL;
static float * eighthGridResidual = NULL;
float solver_multigrid_calculate_residual_norm_serial(float * phi, float * phi0, float a, float c, int GRIDDIM);
float solver_multigrid_calculate_residual_parallel(float * phi, float * phi0, float a, float c, int GRIDDIM);
float solver_multigrid_store_residual_serial(float * phi, float * phi0, float * residualGrid, float a, float c, int GRIDDIM);
float * get_current_phi(int dim);
float * get_current_phi0(int dim);
float * get_current_residual(int dim);
void initialization_check();
/**
* Relaxes an ODE matrix by 1 iteration of multigrid method
@ -51,40 +63,171 @@ float solver_multigrid_store_residual_serial(float * phi, float * phi0, float *
* @param c The c const
* @return The residual
*/
float solver_multigrid_iterate(float * phi, float * phi0, float a, float c){
float solver_multigrid_iterate_serial_recursive(float * phi, float * phi0, float a, float c, int GRIDDIM){
initialization_check();
float residual;
printf("Current dim: %d \n",GRIDDIM);
fflush(stdout);
int LOWERDIM = ((GRIDDIM - 2) / 2) + 2;
float * currResidual = get_current_residual(GRIDDIM);
float * lowerPhi = get_current_phi(LOWERDIM);
float * lowerPhi0 = get_current_phi0(LOWERDIM);
float * lowerResidual = get_current_residual(LOWERDIM);
printf("Solved arrays: %p %p %p %p \n",currResidual,lowerPhi, lowerPhi0, lowerResidual);
fflush(stdout);
printf("smooth\n");
fflush(stdout);
//
//gauss-seidel at highest res
solver_gauss_seidel_iterate_parallel(phi,phi0,a,c,GRIDDIM);
if(GRIDDIM == DIM){
fluid_grid2_set_bounds(0,phi);
}
//compute residuals
residual = solver_multigrid_store_residual_serial(phi,phi0,currResidual,a,c,GRIDDIM);
printf("restrict\n");
fflush(stdout);
//restrict
//(current operator is injection -- inject r^2 from this grid at phi0 of the smaller grid)
for(int x = 0; x < LOWERDIM; x++){
for(int y = 0; y < LOWERDIM; y++){
for(int z = 0; z < LOWERDIM; z++){
lowerPhi[solver_gauss_seidel_get_index(x,y,z,LOWERDIM)] = 0;
lowerPhi0[solver_gauss_seidel_get_index(x,y,z,LOWERDIM)] = 0;
}
}
}
//populate grid
for(int x = 1; x < LOWERDIM - 1; x++){
for(int y = 1; y < LOWERDIM - 1; y++){
for(int z = 1; z < LOWERDIM - 1; z++){
//direct transfer operator (faster, lower accuracy)
lowerPhi0[solver_gauss_seidel_get_index(x,y,z,LOWERDIM)] = currResidual[solver_gauss_seidel_get_index(x*2,y*2,z*2,GRIDDIM)];
}
}
}
printf("recurse\n");
fflush(stdout);
//solve next-coarsest grid
if(GRIDDIM <= LOWEST_DIM){
//smooth
solver_gauss_seidel_iterate_parallel(quarterGridPhi,quarterGridPhi0,a,c,quarterDim);
//compute residual
residual = solver_multigrid_store_residual_serial(quarterGridPhi,quarterGridPhi0,quarterGridResidual,a,c,quarterDim);
} else {
printf("solve\n");
fflush(stdout);
float solution =
(
phi0[solver_gauss_seidel_get_index(1,1,1,GRIDDIM)] +
phi0[solver_gauss_seidel_get_index(2,1,1,GRIDDIM)] +
phi0[solver_gauss_seidel_get_index(1,2,1,GRIDDIM)] +
phi0[solver_gauss_seidel_get_index(1,1,2,GRIDDIM)] +
phi0[solver_gauss_seidel_get_index(1,2,2,GRIDDIM)] +
phi0[solver_gauss_seidel_get_index(2,1,2,GRIDDIM)] +
phi0[solver_gauss_seidel_get_index(2,2,1,GRIDDIM)] +
phi0[solver_gauss_seidel_get_index(2,2,2,GRIDDIM)]
) / 8.0f
;
printf("interpolate solution\n");
fflush(stdout);
//interpolate from the lower grid
for(int x = 1; x < GRIDDIM - 1; x++){
for(int y = 1; y < GRIDDIM - 1; y++){
for(int z = 1; z < GRIDDIM - 1; z++){
//direct transfer operator (faster, lower accuracy)
phi[solver_gauss_seidel_get_index(x,y,z,GRIDDIM)] = phi[solver_gauss_seidel_get_index(x,y,z,GRIDDIM)] + solution;
}
}
}
}
printf("interpolate\n");
fflush(stdout);
//interpolate from the lower grid
for(int x = 1; x < GRIDDIM - 1; x++){
for(int y = 1; y < GRIDDIM - 1; y++){
for(int z = 1; z < GRIDDIM - 1; z++){
//direct transfer operator (faster, lower accuracy)
phi[solver_gauss_seidel_get_index(x,y,z,GRIDDIM)] =
phi[solver_gauss_seidel_get_index(x,y,z,GRIDDIM)] +
lowerPhi[solver_gauss_seidel_get_index( x/2+0, y/2+0, z/2+0 ,LOWERDIM)]
;
//interpolation operator (slower, better accuracy)
// phi[solver_gauss_seidel_get_index(x,y,z,DIM)] =
// phi[solver_gauss_seidel_get_index(x,y,z,DIM)] +
// (
// halfGridPhi[solver_gauss_seidel_get_index( x/2+0, y/2+0, z/2+0 ,halfDim)] +
// halfGridPhi[solver_gauss_seidel_get_index( x/2+0, y/2+0, z/2+1 ,halfDim)] +
// halfGridPhi[solver_gauss_seidel_get_index( x/2+0, y/2+1, z/2+0 ,halfDim)] +
// halfGridPhi[solver_gauss_seidel_get_index( x/2+0, y/2+1, z/2+1 ,halfDim)] +
// halfGridPhi[solver_gauss_seidel_get_index( x/2+1, y/2+0, z/2+0 ,halfDim)] +
// halfGridPhi[solver_gauss_seidel_get_index( x/2+1, y/2+0, z/2+1 ,halfDim)] +
// halfGridPhi[solver_gauss_seidel_get_index( x/2+1, y/2+1, z/2+0 ,halfDim)] +
// halfGridPhi[solver_gauss_seidel_get_index( x/2+1, y/2+1, z/2+1 ,halfDim)]
// )
// ;
}
}
}
printf("smooth\n");
fflush(stdout);
//
// full res
if(fullGridResidual == NULL){
fullGridResidual = (float *)calloc(1,DIM * DIM * DIM * sizeof(float));
//
//
//smooth
solver_gauss_seidel_iterate_parallel(phi,phi0,a,c,GRIDDIM);
if(GRIDDIM == DIM){
fluid_grid2_set_bounds(0,phi);
}
// half res
if(halfGridPhi == NULL){
halfGridPhi = (float *)calloc(1,halfDim * halfDim * halfDim * sizeof(float));
}
if(halfGridPhi0 == NULL){
halfGridPhi0 = (float *)calloc(1,halfDim * halfDim * halfDim * sizeof(float));
}
if(halfGridResidual == NULL){
halfGridResidual = (float *)calloc(1,halfDim * halfDim * halfDim * sizeof(float));
}
return solver_multigrid_calculate_residual_norm_serial(phi,phi0,a,c,GRIDDIM);
}
// quarter res
if(quarterGridPhi == NULL){
quarterGridPhi = (float *)calloc(1,quarterDim * quarterDim * quarterDim * sizeof(float));
}
if(quarterGridPhi0 == NULL){
quarterGridPhi0 = (float *)calloc(1,quarterDim * quarterDim * quarterDim * sizeof(float));
}
if(quarterGridResidual == NULL){
quarterGridResidual = (float *)calloc(1,quarterDim * quarterDim * quarterDim * sizeof(float));
}
/**
* Relaxes an ODE matrix by 1 iteration of multigrid method
* @param phi The phi array
* @param phi0 The phi array from the last frame
* @param a The a const
* @param c The c const
* @return The residual
*/
float solver_multigrid_iterate_serial(float * phi, float * phi0, float a, float c){
return solver_multigrid_iterate_serial_recursive(phi,phi0,a,c,DIM);
}
/**
* Relaxes an ODE matrix by 1 iteration of multigrid method
* @param phi The phi array
* @param phi0 The phi array from the last frame
* @param a The a const
* @param c The c const
* @return The residual
*/
float solver_multigrid_iterate_parallel(float * phi, float * phi0, float a, float c){
initialization_check();
float residual;
//
//gauss-seidel at highest res
solver_gauss_seidel_iterate_serial(phi,phi0,a,c,DIM);
solver_gauss_seidel_iterate_parallel(phi,phi0,a,c,DIM);
fluid_grid2_set_bounds(0,phi);
//compute residuals
residual = solver_multigrid_store_residual_serial(phi,phi0,fullGridResidual,a,c,DIM);
@ -117,7 +260,7 @@ float solver_multigrid_iterate(float * phi, float * phi0, float a, float c){
//half res
//
//smooth
solver_gauss_seidel_iterate_serial(halfGridPhi,halfGridPhi0,a,c,halfDim);
solver_gauss_seidel_iterate_parallel(halfGridPhi,halfGridPhi0,a,c,halfDim);
//compute residual
residual = solver_multigrid_store_residual_serial(halfGridPhi,halfGridPhi0,halfGridResidual,a,c,halfDim);
@ -151,7 +294,7 @@ float solver_multigrid_iterate(float * phi, float * phi0, float a, float c){
}
//smooth
solver_gauss_seidel_iterate_serial(quarterGridPhi,quarterGridPhi0,a,c,quarterDim);
solver_gauss_seidel_iterate_parallel(quarterGridPhi,quarterGridPhi0,a,c,quarterDim);
//compute residual
residual = solver_multigrid_store_residual_serial(quarterGridPhi,quarterGridPhi0,quarterGridResidual,a,c,quarterDim);
@ -193,7 +336,7 @@ float solver_multigrid_iterate(float * phi, float * phi0, float a, float c){
//
//smooth
solver_gauss_seidel_iterate_serial(halfGridPhi,halfGridPhi0,a,c,halfDim);
solver_gauss_seidel_iterate_parallel(halfGridPhi,halfGridPhi0,a,c,halfDim);
//compute residual
residual = solver_multigrid_store_residual_serial(halfGridPhi,halfGridPhi0,halfGridResidual,a,c,halfDim);
@ -236,7 +379,7 @@ float solver_multigrid_iterate(float * phi, float * phi0, float a, float c){
//
//
//smooth
solver_gauss_seidel_iterate_serial(phi,phi0,a,c,DIM);
solver_gauss_seidel_iterate_parallel(phi,phi0,a,c,DIM);
fluid_grid2_set_bounds(0,phi);
@ -245,6 +388,103 @@ float solver_multigrid_iterate(float * phi, float * phi0, float a, float c){
/**
* Gets the phi to use for the current level of the multigrid solver
*/
float * get_current_phi(int dim){
if(dim == ((DIM-2)/2) + 2){
return halfGridPhi;
} else if(dim == ((DIM-2)/4) + 2){
return quarterGridPhi;
} else if(dim == ((DIM-2)/8) + 2){
return eighthGridPhi;
} else {
printf("[get_current_phi] Invalid dim detected! %d\n",dim);
fflush(stdout);
return NULL;
}
}
/**
* Gets the phi0 to use for the current level of the multigrid solver
*/
float * get_current_phi0(int dim){
if(dim == ((DIM-2)/2) + 2){
return halfGridPhi0;
} else if(dim == ((DIM-2)/4) + 2){
return quarterGridPhi0;
} else if(dim == ((DIM-2)/8) + 2){
return eighthGridPhi0;
} else {
printf("[get_current_phi0] Invalid dim detected! %d\n",dim);
fflush(stdout);
return NULL;
}
}
/**
* Gets the residual to use for the current level of the multigrid solver
*/
float * get_current_residual(int dim){
if(dim == 18){
return fullGridResidual;
} else if(dim == ((DIM-2)/2) + 2){
return halfGridResidual;
} else if(dim == ((DIM-2)/4) + 2){
return quarterGridResidual;
} else if(dim == ((DIM-2)/8) + 2){
return eighthGridResidual;
} else {
printf("[get_current_residual] Invalid dim detected! %d\n",dim);
fflush(stdout);
return NULL;
}
}
/**
* Verifies that all grids are allocated
*/
void initialization_check(){
// full res
if(fullGridResidual == NULL){
fullGridResidual = (float *)calloc(1,DIM * DIM * DIM * sizeof(float));
}
// half res
if(halfGridPhi == NULL){
halfGridPhi = (float *)calloc(1,halfDim * halfDim * halfDim * sizeof(float));
}
if(halfGridPhi0 == NULL){
halfGridPhi0 = (float *)calloc(1,halfDim * halfDim * halfDim * sizeof(float));
}
if(halfGridResidual == NULL){
halfGridResidual = (float *)calloc(1,halfDim * halfDim * halfDim * sizeof(float));
}
// quarter res
if(quarterGridPhi == NULL){
quarterGridPhi = (float *)calloc(1,quarterDim * quarterDim * quarterDim * sizeof(float));
}
if(quarterGridPhi0 == NULL){
quarterGridPhi0 = (float *)calloc(1,quarterDim * quarterDim * quarterDim * sizeof(float));
}
if(quarterGridResidual == NULL){
quarterGridResidual = (float *)calloc(1,quarterDim * quarterDim * quarterDim * sizeof(float));
}
// quarter res
int eighthResDim = ((DIM-2)/8) + 2;
if(eighthGridPhi == NULL){
eighthGridPhi = (float *)calloc(1,eighthResDim * eighthResDim * eighthResDim * sizeof(float));
}
if(eighthGridPhi0 == NULL){
eighthGridPhi0 = (float *)calloc(1,eighthResDim * eighthResDim * eighthResDim * sizeof(float));
}
if(eighthGridResidual == NULL){
eighthGridResidual = (float *)calloc(1,eighthResDim * eighthResDim * eighthResDim * sizeof(float));
}
}
/**
* Calculates the residual of the grid