multigrid working with diffusion solvers
Some checks failed
studiorailgun/Renderer/pipeline/head There was a failure building this commit
Some checks failed
studiorailgun/Renderer/pipeline/head There was a failure building this commit
This commit is contained in:
parent
9b1fa6939a
commit
95adeb318a
3
.vscode/settings.json
vendored
3
.vscode/settings.json
vendored
@ -48,6 +48,7 @@
|
||||
"ode_utils.h": "c",
|
||||
"util.h": "c",
|
||||
"conjugate_gradient.h": "c",
|
||||
"flux.h": "c"
|
||||
"flux.h": "c",
|
||||
"diffusion_ode.h": "c"
|
||||
}
|
||||
}
|
||||
7
src/main/c/includes/fluid/env/environment.h
vendored
7
src/main/c/includes/fluid/env/environment.h
vendored
@ -4,6 +4,7 @@
|
||||
#include <jni.h>
|
||||
#include "public.h"
|
||||
#include "fluid/queue/chunk.h"
|
||||
#include "math/ode/diffusion_ode.h"
|
||||
|
||||
/**
|
||||
* The List lookup table
|
||||
@ -73,6 +74,7 @@ typedef struct {
|
||||
typedef struct {
|
||||
//density data
|
||||
double densityTotal;
|
||||
double densityMaintenance;
|
||||
double densityDiffuse;
|
||||
double densityAdvect;
|
||||
|
||||
@ -115,6 +117,11 @@ typedef struct {
|
||||
float * fluid_grid2_neighborArr_bounds;
|
||||
float * fluid_grid2_neighborArr_divergenceCache;
|
||||
float * fluid_grid2_neighborArr_scalarCache;
|
||||
|
||||
/**
|
||||
* Data for computing diffusion ODEs
|
||||
*/
|
||||
OdeDiffuseData diffuseData;
|
||||
} FluidGrid2State;
|
||||
|
||||
/**
|
||||
|
||||
@ -7,6 +7,11 @@
|
||||
*/
|
||||
#define FLUID_GRID2_LINEARSOLVERTIMES 10
|
||||
|
||||
/**
|
||||
* Convergence threshold for density diffusion
|
||||
*/
|
||||
#define FLUID_GRID2_DENSITY_DIFFUSE_THRESHOLD 0.001f
|
||||
|
||||
/**
|
||||
* The number of times to relax most solvers
|
||||
*/
|
||||
|
||||
@ -1,7 +1,15 @@
|
||||
#ifndef MATH_CONJUGATE_GRADIENT_H
|
||||
#define MATH_CONJUGATE_GRADIENT_H
|
||||
|
||||
#include "math/ode/ode.h"
|
||||
|
||||
|
||||
|
||||
//
|
||||
//
|
||||
// NAVIER STOKES SPECIFIC
|
||||
//
|
||||
//
|
||||
/**
|
||||
* Iniitalizes the conjugate gradient solver with the phi values
|
||||
* @param phi The phi array
|
||||
@ -19,7 +27,7 @@ int solver_conjugate_gradient_init(float * phi, float * phi0, float a, float c);
|
||||
* @param a The a const
|
||||
* @param c The c const
|
||||
*/
|
||||
void solver_conjugate_gradient_init_serial(float * phi, float * phi0, float a, float c);
|
||||
void solver_conjugate_gradient_init_navier_stokes_serial(float * phi, float * phi0, float a, float c);
|
||||
|
||||
/**
|
||||
* Iteratively solves an ODE matrix by 1 iteration of conjugate gradient method serially
|
||||
@ -29,7 +37,7 @@ void solver_conjugate_gradient_init_serial(float * phi, float * phi0, float a, f
|
||||
* @param c The c const
|
||||
* @return The residual
|
||||
*/
|
||||
float solver_conjugate_gradient_iterate_serial(float * phi, float * phi0, float a, float c);
|
||||
float solver_conjugate_gradient_iterate_navier_stokes_serial(float * phi, float * phi0, float a, float c);
|
||||
|
||||
/**
|
||||
* Iteratively solves an ODE matrix by 1 iteration of conjugate gradient method
|
||||
@ -41,4 +49,36 @@ float solver_conjugate_gradient_iterate_serial(float * phi, float * phi0, float
|
||||
*/
|
||||
float solver_conjugate_gradient_iterate_parallel(float * phi, float * phi0, float a, float c);
|
||||
|
||||
|
||||
|
||||
//
|
||||
//
|
||||
// GENERIC ODES
|
||||
//
|
||||
//
|
||||
|
||||
|
||||
/**
|
||||
* Computes the stencil for the conjugate gradient solver
|
||||
*/
|
||||
typedef float (* ode_cg_search_direction_stencil)(float * phi, int x, int y, int z, OdeData * data);
|
||||
|
||||
/**
|
||||
* Initializes the conjugate gradient solver
|
||||
* @param phi The phi array
|
||||
* @param phi0 The phi array from the last frame
|
||||
*/
|
||||
void solver_conjugate_gradient_init_serial(float * phi, float * phi0);
|
||||
|
||||
|
||||
/**
|
||||
* Iteratively solves an ODE matrix by 1 iteration of conjugate gradient method serially
|
||||
* @param phi The phi array
|
||||
* @param phi0 The phi array from the last frame
|
||||
* @param stencil_func The stencil to compute the search direction
|
||||
* @param odeData The ode data
|
||||
* @return The residual
|
||||
*/
|
||||
float solver_conjugate_gradient_iterate_serial(float * phi, float * phi0, ode_cg_search_direction_stencil stencil_func, OdeData * odeData);
|
||||
|
||||
#endif
|
||||
27
src/main/c/includes/math/ode/diffusion_ode.h
Normal file
27
src/main/c/includes/math/ode/diffusion_ode.h
Normal file
@ -0,0 +1,27 @@
|
||||
#ifndef MATH_ODE_DIFFUSION_ODE_H
|
||||
#define MATH_ODE_DIFFUSION_ODE_H
|
||||
|
||||
#include "math/ode/ode.h"
|
||||
#include "fluid/env/utilities.h"
|
||||
#include "fluid/queue/chunk.h"
|
||||
#include "fluid/sim/grid2/solver_consts.h"
|
||||
|
||||
/**
|
||||
* Data for computing the diffusion ode
|
||||
*/
|
||||
typedef struct {
|
||||
/**
|
||||
* Simulation timestep
|
||||
*/
|
||||
float dt;
|
||||
} OdeDiffuseData;
|
||||
|
||||
|
||||
/**
|
||||
* Computes the residual of a given position in a diffusion ode
|
||||
*/
|
||||
float ode_diffusion_cg_stencil(float * phi, int x, int y, int z, OdeData * data);
|
||||
|
||||
|
||||
|
||||
#endif
|
||||
@ -191,7 +191,8 @@ static inline void solver_multigrid_parallel_store_residual(float * phi, float *
|
||||
return;
|
||||
}
|
||||
__m256 laplacian;
|
||||
__m256 constVec = _mm256_set1_ps(6);
|
||||
__m256 constVecA = _mm256_set1_ps(a);
|
||||
__m256 constVecC = _mm256_set1_ps(c);
|
||||
//calculate residual
|
||||
int i, j, k;
|
||||
for(k=1; k<GRIDDIM-1; k++){
|
||||
@ -201,8 +202,9 @@ static inline void solver_multigrid_parallel_store_residual(float * phi, float *
|
||||
_mm256_sub_ps(
|
||||
_mm256_mul_ps(
|
||||
_mm256_loadu_ps(&phi[solver_gauss_seidel_get_index(i,j,k,GRIDDIM)]),
|
||||
constVec
|
||||
constVecC
|
||||
),
|
||||
_mm256_mul_ps(
|
||||
_mm256_add_ps(
|
||||
_mm256_add_ps(
|
||||
_mm256_add_ps(
|
||||
@ -218,6 +220,8 @@ static inline void solver_multigrid_parallel_store_residual(float * phi, float *
|
||||
_mm256_loadu_ps(&phi[solver_gauss_seidel_get_index(i,j,k-1,GRIDDIM)]),
|
||||
_mm256_loadu_ps(&phi[solver_gauss_seidel_get_index(i,j,k+1,GRIDDIM)])
|
||||
)
|
||||
),
|
||||
constVecA
|
||||
)
|
||||
);
|
||||
_mm256_storeu_ps(
|
||||
|
||||
21
src/main/c/includes/math/ode/ode.h
Normal file
21
src/main/c/includes/math/ode/ode.h
Normal file
@ -0,0 +1,21 @@
|
||||
#ifndef MATH_ODE_H
|
||||
#define MATH_ODE_H
|
||||
|
||||
|
||||
/**
|
||||
* Data for computing the ode (ie could hold timestep for instance)
|
||||
*/
|
||||
typedef void * OdeData;
|
||||
|
||||
/**
|
||||
* Computes the residual of a given position in an ode
|
||||
*/
|
||||
typedef float (* ode_approximate_stencil)(float * phi, float * phi0, int x, int y, int z, OdeData * data);
|
||||
|
||||
/**
|
||||
* Computes the residual of a given position in an ode
|
||||
*/
|
||||
typedef float (* ode_residual_stencil)(float * phi, float * phi0, int x, int y, int z, OdeData * data);
|
||||
|
||||
|
||||
#endif
|
||||
@ -68,21 +68,23 @@ LIBRARY_API void fluid_grid2_solveDiffuseDensity(
|
||||
float * x = GET_ARR_RAW(d,CENTER_LOC);
|
||||
float * x0 = GET_ARR_RAW(d0,CENTER_LOC);
|
||||
|
||||
// float residual = 1;
|
||||
// int iterations = 0;
|
||||
// while(iterations < FLUID_GRID2_LINEARSOLVERTIMES && (residual > FLUID_GRID2_SOLVER_MULTIGRID_TOLERANCE || residual < -FLUID_GRID2_SOLVER_MULTIGRID_TOLERANCE)){
|
||||
// residual = solver_multigrid_parallel_iterate(x,x0,a,c);
|
||||
// fluid_grid2_set_bounds(BOUND_SET_DENSITY_PHI,x);
|
||||
// iterations++;
|
||||
// }
|
||||
|
||||
for(int l = 0; l < FLUID_GRID2_LINEARSOLVERTIMES; l++){
|
||||
//iterate
|
||||
solver_gauss_seidel_iterate_parallel(x,x0,a,c,DIM);
|
||||
|
||||
//set bounds
|
||||
//about ~40% faster than gauss seidel
|
||||
float residual = 1;
|
||||
int iterations = 0;
|
||||
while(iterations < FLUID_GRID2_SOLVER_MULTIGRID_MAX_ITERATIONS && (residual > FLUID_GRID2_SOLVER_MULTIGRID_TOLERANCE || residual < -FLUID_GRID2_SOLVER_MULTIGRID_TOLERANCE)){
|
||||
residual = solver_multigrid_parallel_iterate(x,x0,a,c);
|
||||
fluid_grid2_set_bounds(environment,BOUND_SET_DENSITY_PHI,x);
|
||||
iterations++;
|
||||
}
|
||||
|
||||
// //about ~40% slower than multigrid
|
||||
// for(int l = 0; l < FLUID_GRID2_LINEARSOLVERTIMES; l++){
|
||||
// //iterate
|
||||
// solver_gauss_seidel_iterate_parallel(x,x0,a,c,DIM);
|
||||
|
||||
// //set bounds
|
||||
// fluid_grid2_set_bounds(environment,BOUND_SET_DENSITY_PHI,x);
|
||||
// }
|
||||
}
|
||||
|
||||
/**
|
||||
|
||||
@ -39,12 +39,13 @@ LIBRARY_API void fluid_grid2_simulate(
|
||||
Chunk ** chunks = passedInChunks;
|
||||
double start, end, perMilli;
|
||||
|
||||
//update ODE solver data
|
||||
environment->state.grid2.diffuseData.dt = timestep;
|
||||
|
||||
|
||||
gettimeofday(&tv,NULL);
|
||||
start = 1000000.0 * tv.tv_sec + tv.tv_usec;
|
||||
//
|
||||
//Velocity step
|
||||
//
|
||||
//maintenance
|
||||
for(int i = 0; i < numChunks; i++){
|
||||
Chunk * currentChunk = chunks[i];
|
||||
//update the bounds arrays
|
||||
@ -69,6 +70,16 @@ LIBRARY_API void fluid_grid2_simulate(
|
||||
fluid_grid2_flip_arrays(currentChunk->u,currentChunk->u0);
|
||||
fluid_grid2_flip_arrays(currentChunk->v,currentChunk->v0);
|
||||
fluid_grid2_flip_arrays(currentChunk->w,currentChunk->w0);
|
||||
}
|
||||
|
||||
gettimeofday(&tv,NULL);
|
||||
start = 1000000.0 * tv.tv_sec + tv.tv_usec;
|
||||
|
||||
//diffuse velocity
|
||||
for(int i = 0; i < numChunks; i++){
|
||||
Chunk * currentChunk = chunks[i];
|
||||
//update the bounds arrays
|
||||
fluid_grid2_rewrite_bounds(environment,currentChunk);
|
||||
|
||||
//solve vector diffusion
|
||||
fluid_grid2_solveVectorDiffuse(
|
||||
@ -82,19 +93,21 @@ LIBRARY_API void fluid_grid2_simulate(
|
||||
timestep
|
||||
);
|
||||
|
||||
// }
|
||||
}
|
||||
|
||||
// //time tracking
|
||||
// gettimeofday(&tv,NULL);
|
||||
// end = 1000000.0 * tv.tv_sec + tv.tv_usec;
|
||||
// perMilli = (end - start) / 1000.0f;
|
||||
// environment->state.timeTracking.velocityDiffuse = perMilli;
|
||||
// start = end;
|
||||
//time tracking
|
||||
gettimeofday(&tv,NULL);
|
||||
end = 1000000.0 * tv.tv_sec + tv.tv_usec;
|
||||
perMilli = (end - start) / 1000.0f;
|
||||
environment->state.timeTracking.velocityDiffuse = perMilli;
|
||||
start = end;
|
||||
|
||||
// for(int i = 0; i < numChunks; i++){
|
||||
// Chunk * currentChunk = chunks[i];
|
||||
// //update the bounds arrays
|
||||
// fluid_grid2_rewrite_bounds(currentChunk);
|
||||
|
||||
//project
|
||||
for(int i = 0; i < numChunks; i++){
|
||||
Chunk * currentChunk = chunks[i];
|
||||
//update the bounds arrays
|
||||
fluid_grid2_rewrite_bounds(environment,currentChunk);
|
||||
|
||||
// setup projection
|
||||
fluid_grid2_setupProjection(
|
||||
@ -120,37 +133,38 @@ LIBRARY_API void fluid_grid2_simulate(
|
||||
fluid_grid2_flip_arrays(currentChunk->v,currentChunk->v0);
|
||||
fluid_grid2_flip_arrays(currentChunk->w,currentChunk->w0);
|
||||
|
||||
// }
|
||||
}
|
||||
|
||||
// //time tracking
|
||||
// gettimeofday(&tv,NULL);
|
||||
// end = 1000000.0 * tv.tv_sec + tv.tv_usec;
|
||||
// perMilli = (end - start) / 1000.0f;
|
||||
// environment->state.timeTracking.velocityProject = perMilli;
|
||||
// start = end;
|
||||
//time tracking
|
||||
gettimeofday(&tv,NULL);
|
||||
end = 1000000.0 * tv.tv_sec + tv.tv_usec;
|
||||
perMilli = (end - start) / 1000.0f;
|
||||
environment->state.timeTracking.velocityProject = perMilli;
|
||||
start = end;
|
||||
|
||||
// for(int i = 0; i < numChunks; i++){
|
||||
// Chunk * currentChunk = chunks[i];
|
||||
// Chunk * currentChunk = chunks[i];
|
||||
// //update the bounds arrays
|
||||
// fluid_grid2_rewrite_bounds(currentChunk);
|
||||
//advect
|
||||
for(int i = 0; i < numChunks; i++){
|
||||
Chunk * currentChunk = chunks[i];
|
||||
//update the bounds arrays
|
||||
fluid_grid2_rewrite_bounds(environment,currentChunk);
|
||||
|
||||
// advect
|
||||
fluid_grid2_advectVectors(environment,currentChunk->u,currentChunk->v,currentChunk->w,currentChunk->u0,currentChunk->v0,currentChunk->w0,timestep);
|
||||
|
||||
// }
|
||||
}
|
||||
|
||||
// //time tracking
|
||||
// gettimeofday(&tv,NULL);
|
||||
// end = 1000000.0 * tv.tv_sec + tv.tv_usec;
|
||||
// perMilli = (end - start) / 1000.0f;
|
||||
// environment->state.timeTracking.velocityAdvect = perMilli;
|
||||
// start = end;
|
||||
//time tracking
|
||||
gettimeofday(&tv,NULL);
|
||||
end = 1000000.0 * tv.tv_sec + tv.tv_usec;
|
||||
perMilli = (end - start) / 1000.0f;
|
||||
environment->state.timeTracking.velocityAdvect = perMilli;
|
||||
start = end;
|
||||
|
||||
// for(int i = 0; i < numChunks; i++){
|
||||
// Chunk * currentChunk = chunks[i];
|
||||
// //update the bounds arrays
|
||||
// fluid_grid2_rewrite_bounds(currentChunk);
|
||||
//project again
|
||||
for(int i = 0; i < numChunks; i++){
|
||||
Chunk * currentChunk = chunks[i];
|
||||
//update the bounds arrays
|
||||
fluid_grid2_rewrite_bounds(environment,currentChunk);
|
||||
|
||||
//setup projection
|
||||
fluid_grid2_setupProjection(environment,currentChunk,currentChunk->u,currentChunk->v,currentChunk->w,currentChunk->u0,currentChunk->v0,timestep);
|
||||
@ -185,32 +199,58 @@ LIBRARY_API void fluid_grid2_simulate(
|
||||
environment->state.newDensity = 0;
|
||||
for(int i = 0; i < numChunks; i++){
|
||||
Chunk * currentChunk = chunks[i];
|
||||
//update the bounds arrays
|
||||
fluid_grid2_rewrite_bounds(environment, currentChunk);
|
||||
//add density
|
||||
fluid_grid2_addDensity(environment,currentChunk->d,currentChunk->d0,timestep);
|
||||
environment->state.existingDensity = environment->state.existingDensity + fluid_grid2_calculateSum(currentChunk->d);
|
||||
//swap all density arrays
|
||||
fluid_grid2_flip_arrays(currentChunk->d,currentChunk->d0);
|
||||
}
|
||||
|
||||
//time tracking
|
||||
gettimeofday(&tv,NULL);
|
||||
end = 1000000.0 * tv.tv_sec + tv.tv_usec;
|
||||
perMilli = (end - start) / 1000.0f;
|
||||
environment->state.timeTracking.densityMaintenance = perMilli;
|
||||
start = end;
|
||||
|
||||
|
||||
//solve density diffusion
|
||||
for(int i = 0; i < numChunks; i++){
|
||||
Chunk * currentChunk = chunks[i];
|
||||
//update the bounds arrays
|
||||
// fluid_grid2_rewrite_bounds(environment, currentChunk); //33% more time than just diffusion step
|
||||
//diffuse density
|
||||
fluid_grid2_solveDiffuseDensity(environment,currentChunk->d,currentChunk->d0,timestep);
|
||||
}
|
||||
|
||||
//time tracking
|
||||
gettimeofday(&tv,NULL);
|
||||
end = 1000000.0 * tv.tv_sec + tv.tv_usec;
|
||||
perMilli = (end - start) / 1000.0f;
|
||||
environment->state.timeTracking.densityDiffuse = perMilli;
|
||||
start = end;
|
||||
|
||||
|
||||
//flip arrays
|
||||
for(int i = 0; i < numChunks; i++){
|
||||
Chunk * currentChunk = chunks[i];
|
||||
//swap all density arrays
|
||||
fluid_grid2_flip_arrays(currentChunk->d,currentChunk->d0);
|
||||
}
|
||||
|
||||
//time tracking
|
||||
gettimeofday(&tv,NULL);
|
||||
end = 1000000.0 * tv.tv_sec + tv.tv_usec;
|
||||
perMilli = (end - start) / 1000.0f;
|
||||
environment->state.timeTracking.densityMaintenance = environment->state.timeTracking.densityMaintenance + perMilli;
|
||||
start = end;
|
||||
|
||||
|
||||
// }
|
||||
|
||||
// //time tracking
|
||||
// gettimeofday(&tv,NULL);
|
||||
// end = 1000000.0 * tv.tv_sec + tv.tv_usec;
|
||||
// perMilli = (end - start) / 1000.0f;
|
||||
// environment->state.timeTracking.densityDiffuse = perMilli;
|
||||
// start = end;
|
||||
|
||||
// for(int i = 0; i < numChunks; i++){
|
||||
// Chunk * currentChunk = chunks[i];
|
||||
// //update the bounds arrays
|
||||
// fluid_grid2_rewrite_bounds(environment, currentChunk);
|
||||
//advect
|
||||
for(int i = 0; i < numChunks; i++){
|
||||
Chunk * currentChunk = chunks[i];
|
||||
//update the bounds arrays
|
||||
fluid_grid2_rewrite_bounds(environment, currentChunk);
|
||||
|
||||
|
||||
//advect density
|
||||
|
||||
@ -11,6 +11,7 @@
|
||||
#include "math/ode/gauss_seidel.h"
|
||||
#include "math/ode/multigrid_parallel.h"
|
||||
#include "math/ode/conjugate_gradient.h"
|
||||
#include "math/ode/diffusion_ode.h"
|
||||
#include "util/matrix.h"
|
||||
|
||||
#define SET_BOUND_IGNORE 0
|
||||
@ -58,21 +59,87 @@ LIBRARY_API void fluid_grid2_solveVectorDiffuse(
|
||||
float * v0 = GET_ARR_RAW(jrv0,CENTER_LOC);
|
||||
float * w0 = GET_ARR_RAW(jrw0,CENTER_LOC);
|
||||
|
||||
for(int l = 0; l < FLUID_GRID2_LINEARSOLVERTIMES; l++){
|
||||
//transform u direction
|
||||
solver_gauss_seidel_iterate_parallel(u,u0,a,c,DIM);
|
||||
// //about ~30% faster
|
||||
// for(int l = 0; l < FLUID_GRID2_LINEARSOLVERTIMES; l++){
|
||||
// //transform u direction
|
||||
// solver_gauss_seidel_iterate_parallel(u,u0,a,c,DIM);
|
||||
|
||||
//transform v direction
|
||||
solver_gauss_seidel_iterate_parallel(v,v0,a,c,DIM);
|
||||
// //transform v direction
|
||||
// solver_gauss_seidel_iterate_parallel(v,v0,a,c,DIM);
|
||||
|
||||
//transform w direction
|
||||
solver_gauss_seidel_iterate_parallel(w,w0,a,c,DIM);
|
||||
// //transform w direction
|
||||
// solver_gauss_seidel_iterate_parallel(w,w0,a,c,DIM);
|
||||
|
||||
//set bounds
|
||||
// //set bounds
|
||||
// fluid_grid2_set_bounds(environment,BOUND_SET_VECTOR_DIFFUSE_PHI_U,u);
|
||||
// fluid_grid2_set_bounds(environment,BOUND_SET_VECTOR_DIFFUSE_PHI_V,v);
|
||||
// fluid_grid2_set_bounds(environment,BOUND_SET_VECTOR_DIFFUSE_PHI_W,w);
|
||||
// }
|
||||
|
||||
float residual;
|
||||
int iterations;
|
||||
|
||||
residual = 1;
|
||||
iterations = 0;
|
||||
while(iterations < FLUID_GRID2_LINEARSOLVERTIMES && (residual > FLUID_GRID2_SOLVER_MULTIGRID_TOLERANCE || residual < -FLUID_GRID2_SOLVER_MULTIGRID_TOLERANCE)){
|
||||
residual = solver_multigrid_parallel_iterate(u,u0,a,c);
|
||||
fluid_grid2_set_bounds(environment,BOUND_SET_VECTOR_DIFFUSE_PHI_U,u);
|
||||
fluid_grid2_set_bounds(environment,BOUND_SET_VECTOR_DIFFUSE_PHI_V,v);
|
||||
fluid_grid2_set_bounds(environment,BOUND_SET_VECTOR_DIFFUSE_PHI_W,w);
|
||||
iterations++;
|
||||
}
|
||||
|
||||
residual = 1;
|
||||
iterations = 0;
|
||||
while(iterations < FLUID_GRID2_LINEARSOLVERTIMES && (residual > FLUID_GRID2_SOLVER_MULTIGRID_TOLERANCE || residual < -FLUID_GRID2_SOLVER_MULTIGRID_TOLERANCE)){
|
||||
residual = solver_multigrid_parallel_iterate(v,v0,a,c);
|
||||
fluid_grid2_set_bounds(environment,BOUND_SET_VECTOR_DIFFUSE_PHI_V,v);
|
||||
iterations++;
|
||||
}
|
||||
|
||||
residual = 1;
|
||||
iterations = 0;
|
||||
while(iterations < FLUID_GRID2_LINEARSOLVERTIMES && (residual > FLUID_GRID2_SOLVER_MULTIGRID_TOLERANCE || residual < -FLUID_GRID2_SOLVER_MULTIGRID_TOLERANCE)){
|
||||
residual = solver_multigrid_parallel_iterate(w,w0,a,c);
|
||||
fluid_grid2_set_bounds(environment,BOUND_SET_VECTOR_DIFFUSE_PHI_W,w);
|
||||
iterations++;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// //init CG solver
|
||||
// solver_conjugate_gradient_init_serial(u,u0);
|
||||
// residual = 1;
|
||||
// iterations = 0;
|
||||
// //solve with CG
|
||||
// while(iterations < FLUID_GRID2_SOLVER_CG_MAX_ITERATIONS && (residual > FLUID_GRID2_SOLVER_CG_TOLERANCE || residual < -FLUID_GRID2_SOLVER_CG_TOLERANCE)){
|
||||
// residual = solver_conjugate_gradient_iterate_serial(u,u0,ode_diffusion_cg_stencil, (OdeData *)&(environment->state.grid2.diffuseData));
|
||||
// fluid_grid2_set_bounds(environment,BOUND_SET_VECTOR_DIFFUSE_PHI_U,u);
|
||||
// iterations++;
|
||||
// }
|
||||
|
||||
// //init CG solver
|
||||
// solver_conjugate_gradient_init_serial(v,v0);
|
||||
// residual = 1;
|
||||
// iterations = 0;
|
||||
// //solve with CG
|
||||
// while(iterations < FLUID_GRID2_SOLVER_CG_MAX_ITERATIONS && (residual > FLUID_GRID2_SOLVER_CG_TOLERANCE || residual < -FLUID_GRID2_SOLVER_CG_TOLERANCE)){
|
||||
// residual = solver_conjugate_gradient_iterate_parallel(v,v0,a,c);
|
||||
// residual = solver_conjugate_gradient_iterate_serial(v,v0,ode_diffusion_cg_stencil, (OdeData *)&(environment->state.grid2.diffuseData));
|
||||
// fluid_grid2_set_bounds(environment,BOUND_SET_VECTOR_DIFFUSE_PHI_V,v);
|
||||
// iterations++;
|
||||
// }
|
||||
|
||||
// //init CG solver
|
||||
// solver_conjugate_gradient_init_serial(w,w0);
|
||||
// residual = 1;
|
||||
// iterations = 0;
|
||||
// //solve with CG
|
||||
// while(iterations < FLUID_GRID2_SOLVER_CG_MAX_ITERATIONS && (residual > FLUID_GRID2_SOLVER_CG_TOLERANCE || residual < -FLUID_GRID2_SOLVER_CG_TOLERANCE)){
|
||||
// residual = solver_conjugate_gradient_iterate_serial(w,w0,ode_diffusion_cg_stencil, (OdeData *)&(environment->state.grid2.diffuseData));
|
||||
// fluid_grid2_set_bounds(environment,BOUND_SET_VECTOR_DIFFUSE_PHI_W,w);
|
||||
// iterations++;
|
||||
// }
|
||||
}
|
||||
|
||||
/**
|
||||
@ -201,7 +268,7 @@ LIBRARY_API void fluid_grid2_solveProjection(
|
||||
// }
|
||||
|
||||
//init CG solver
|
||||
solver_conjugate_gradient_init_serial(p,div,a,c);
|
||||
solver_conjugate_gradient_init_serial(p,div);
|
||||
chunk->projectionIterations = 0;
|
||||
//solve with CG
|
||||
while(chunk->projectionIterations < FLUID_GRID2_SOLVER_CG_MAX_ITERATIONS && (chunk->projectionResidual > FLUID_GRID2_SOLVER_CG_TOLERANCE || chunk->projectionResidual < -FLUID_GRID2_SOLVER_CG_TOLERANCE)){
|
||||
@ -210,7 +277,7 @@ LIBRARY_API void fluid_grid2_solveProjection(
|
||||
chunk->projectionIterations++;
|
||||
}
|
||||
if(chunk->projectionResidual > FLUID_GRID2_SOLVER_CG_TOLERANCE || chunk->projectionResidual < -FLUID_GRID2_SOLVER_CG_TOLERANCE){
|
||||
printf("Projection residual didn't converge! %f \n",chunk->projectionResidual);
|
||||
// printf("Projection residual didn't converge! %f \n",chunk->projectionResidual);
|
||||
}
|
||||
|
||||
//store scalar potential in cache
|
||||
|
||||
@ -4,8 +4,10 @@
|
||||
|
||||
#include "fluid/queue/chunk.h"
|
||||
#include "fluid/sim/grid2/solver_consts.h"
|
||||
#include "math/ode/conjugate_gradient.h"
|
||||
#include "math/ode/ode_utils.h"
|
||||
#include "math/ode/gauss_seidel.h"
|
||||
#include "math/ode/ode.h"
|
||||
|
||||
|
||||
/**
|
||||
@ -330,7 +332,7 @@ float solver_conjugate_gradient_iterate_parallel(float * phi, float * phi0, floa
|
||||
* @param c The c const
|
||||
* @return The residual
|
||||
*/
|
||||
float solver_conjugate_gradient_iterate_serial(float * phi, float * phi0, float a, float c){
|
||||
float solver_conjugate_gradient_iterate_navier_stokes_serial(float * phi, float * phi0, float a, float c){
|
||||
int i, j, k;
|
||||
float convergence, denominator;
|
||||
float laplacian, alpha, r_new_dot, beta;
|
||||
@ -398,9 +400,8 @@ float solver_conjugate_gradient_iterate_serial(float * phi, float * phi0, float
|
||||
* @param phi0 The phi array from the last frame
|
||||
* @param a The a const
|
||||
* @param c The c const
|
||||
* @return The residual
|
||||
*/
|
||||
void solver_conjugate_gradient_init_serial(float * phi, float * phi0, float a, float c){
|
||||
void solver_conjugate_gradient_init_navier_stokes_serial(float * phi, float * phi0, float a, float c){
|
||||
int i, j, k;
|
||||
if(p == NULL){
|
||||
p = (float *)calloc(1,DIM*DIM*DIM*sizeof(float));
|
||||
@ -423,3 +424,118 @@ void solver_conjugate_gradient_init_serial(float * phi, float * phi0, float a, f
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Iteratively solves an ODE matrix by 1 iteration of conjugate gradient method serially
|
||||
* @param phi The phi array
|
||||
* @param phi0 The phi array from the last frame
|
||||
*/
|
||||
void solver_conjugate_gradient_init_serial(float * phi, float * phi0){
|
||||
int i, j, k;
|
||||
if(p == NULL){
|
||||
p = (float *)calloc(1,DIM*DIM*DIM*sizeof(float));
|
||||
}
|
||||
if(r == NULL){
|
||||
r = (float *)calloc(1,DIM*DIM*DIM*sizeof(float));
|
||||
}
|
||||
if(A == NULL){
|
||||
A = (float *)calloc(1,DIM*DIM*DIM*sizeof(float));
|
||||
}
|
||||
|
||||
//iniitalize the r (residual) and p (search direction) arrays
|
||||
for(k=1; k<DIM-1; k++){
|
||||
for(j=1; j<DIM-1; j++){
|
||||
for(i = 1; i < DIM-1; i++){
|
||||
r[ode_index(i,j,k,DIM)] = phi0[ode_index(i,j,k,DIM)];
|
||||
p[ode_index(i,j,k,DIM)] = r[ode_index(i,j,k,DIM)];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Iteratively solves an ODE matrix by 1 iteration of conjugate gradient method serially
|
||||
* @param phi The phi array
|
||||
* @param phi0 The phi array from the last frame
|
||||
* @param approximation_func The function to approximate the ode
|
||||
* @param residual_func The function to compute the residual
|
||||
* @param odeData The ode data
|
||||
* @return The residual
|
||||
*/
|
||||
float solver_conjugate_gradient_iterate_serial(float * phi, float * phi0, ode_cg_search_direction_stencil stencil_func, OdeData * odeData){
|
||||
int i, j, k;
|
||||
float convergence, denominator;
|
||||
float laplacian, alpha, r_new_dot, beta;
|
||||
//solve Ap
|
||||
for(k=1; k<DIM-1; k++){
|
||||
for(j=1; j<DIM-1; j++){
|
||||
for(i = 1; i < DIM-1; i++){
|
||||
laplacian = stencil_func(phi,i,j,k,odeData);
|
||||
A[ode_index(i,j,k,DIM)] = laplacian;
|
||||
// if(fabs(laplacian) > 1000000){
|
||||
// printf("%f\n",laplacian);
|
||||
// }
|
||||
}
|
||||
}
|
||||
}
|
||||
convergence = 0;
|
||||
denominator = CONJUGATE_GRADIENT_EPSILON;
|
||||
for(k=1; k<DIM-1; k++){
|
||||
for(j=1; j<DIM-1; j++){
|
||||
for(i = 1; i < DIM-1; i++){
|
||||
convergence = convergence + r[ode_index(i,j,k,DIM)] * r[ode_index(i,j,k,DIM)];
|
||||
denominator = denominator + p[ode_index(i,j,k,DIM)] * A[ode_index(i,j,k,DIM)];
|
||||
// if(fabs(p[ode_index(i,j,k,DIM)] * A[ode_index(i,j,k,DIM)]) > 1000){
|
||||
// printf("convergence: %f denominator: %f \n",
|
||||
// (r[ode_index(i,j,k,DIM)] * r[ode_index(i,j,k,DIM)]),
|
||||
// (p[ode_index(i,j,k,DIM)] * A[ode_index(i,j,k,DIM)])
|
||||
// );
|
||||
// printf("A: %f \n",
|
||||
// A[ode_index(i,j,k,DIM)]
|
||||
// );
|
||||
// printf("r: %f \n",
|
||||
// r[ode_index(i,j,k,DIM)]
|
||||
// );
|
||||
// printf("p: %f \n",
|
||||
// p[ode_index(i,j,k,DIM)]
|
||||
// );
|
||||
// printf("\n");
|
||||
// fflush(stdout);
|
||||
// }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//have hit the desired level of convergence
|
||||
if(convergence < CONJUGATE_GRADIENT_EPSILON && convergence > -CONJUGATE_GRADIENT_EPSILON){
|
||||
return 0.0f;
|
||||
}
|
||||
if(denominator < CONJUGATE_GRADIENT_EPSILON && denominator > -CONJUGATE_GRADIENT_EPSILON){
|
||||
printf("Divide by 0! %f \n", denominator);
|
||||
printf("Convergence: %f \n",convergence);
|
||||
fflush(stdout);
|
||||
}
|
||||
alpha = convergence / denominator;
|
||||
r_new_dot = 0;
|
||||
for(k=1; k<DIM-1; k++){
|
||||
for(j=1; j<DIM-1; j++){
|
||||
for(i = 1; i < DIM-1; i++){
|
||||
phi[ode_index(i,j,k,DIM)] = phi[ode_index(i,j,k,DIM)] + alpha * p[ode_index(i,j,k,DIM)];
|
||||
r[ode_index(i,j,k,DIM)] = r[ode_index(i,j,k,DIM)] - alpha * A[ode_index(i,j,k,DIM)];
|
||||
r_new_dot = r_new_dot + r[ode_index(i,j,k,DIM)] * r[ode_index(i,j,k,DIM)];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
beta = r_new_dot / convergence;
|
||||
for(k=1; k<DIM-1; k++){
|
||||
for(j=1; j<DIM-1; j++){
|
||||
for(i = 1; i < DIM-1; i++){
|
||||
p[ode_index(i,j,k,DIM)] = r[ode_index(i,j,k,DIM)] + beta * p[ode_index(i,j,k,DIM)];
|
||||
}
|
||||
}
|
||||
}
|
||||
return (float)sqrt(convergence);
|
||||
}
|
||||
|
||||
|
||||
20
src/main/c/src/math/ode/diffusion_ode.c
Normal file
20
src/main/c/src/math/ode/diffusion_ode.c
Normal file
@ -0,0 +1,20 @@
|
||||
|
||||
#include "math/ode/diffusion_ode.h"
|
||||
|
||||
/**
|
||||
* Computes the residual of a given position in a diffusion ode
|
||||
*/
|
||||
float ode_diffusion_cg_stencil(float * phi, int x, int y, int z, OdeData * data){
|
||||
OdeDiffuseData * diffuseData = (OdeDiffuseData *)data;
|
||||
float a = diffuseData->dt*FLUID_GRID2_VISCOSITY_CONSTANT/(FLUID_GRID2_H*FLUID_GRID2_H);
|
||||
float c = 1+6*a;
|
||||
return
|
||||
6 * phi[IX(x,y,z)] -
|
||||
1 * (
|
||||
phi[IX(x+1,y,z)] + phi[IX(x-1,y,z)] +
|
||||
phi[IX(x,y+1,z)] + phi[IX(x,y-1,z)] +
|
||||
phi[IX(x,y,z+1)] + phi[IX(x,y,z-1)]
|
||||
)
|
||||
;
|
||||
}
|
||||
|
||||
@ -58,6 +58,11 @@
|
||||
*/
|
||||
#define FLUID_GRID2_PROJECTION_ERROR_MARGIN 0.00001f
|
||||
|
||||
/**
|
||||
* Target number of fluid frames/second
|
||||
*/
|
||||
#define TARGET_FPS 60
|
||||
|
||||
/**
|
||||
* Used for storing timings
|
||||
*/
|
||||
@ -73,7 +78,7 @@ int fluid_sim_grid2_speed_test1(){
|
||||
int rVal = 0;
|
||||
Environment * env = fluid_environment_create();
|
||||
Chunk ** queue = NULL;
|
||||
queue = createChunkGrid(env,3,3,3);
|
||||
queue = createChunkGrid(env,TARGET_SIM_DIAMETER,TARGET_SIM_DIAMETER,TARGET_SIM_DIAMETER);
|
||||
int chunkCount = arrlen(queue);
|
||||
|
||||
|
||||
@ -117,6 +122,7 @@ int fluid_sim_grid2_speed_test1(){
|
||||
printf("Density time (milli): %f \n",env->state.timeTracking.densityTotal);
|
||||
printf(" - Advect (milli): %f \n",env->state.timeTracking.densityAdvect);
|
||||
printf(" - Diffuse (milli): %f \n",env->state.timeTracking.densityDiffuse);
|
||||
printf(" - Maintenance (milli): %f \n",env->state.timeTracking.densityMaintenance);
|
||||
printf("\n");
|
||||
rVal++;
|
||||
}
|
||||
@ -132,7 +138,7 @@ int fluid_sim_grid2_speed_test2(){
|
||||
int rVal = 0;
|
||||
Environment * env = fluid_environment_create();
|
||||
Chunk ** queue = NULL;
|
||||
queue = createChunkGrid(env,3,3,3);
|
||||
queue = createChunkGrid(env,TARGET_SIM_DIAMETER,TARGET_SIM_DIAMETER,TARGET_SIM_DIAMETER);
|
||||
int chunkCount = arrlen(queue);
|
||||
|
||||
|
||||
@ -144,7 +150,7 @@ int fluid_sim_grid2_speed_test2(){
|
||||
float beforeSum = chunk_queue_sum_density(queue);
|
||||
|
||||
//actually simulate
|
||||
int frameCount = 50;
|
||||
int frameCount = TARGET_FPS;
|
||||
double frameTimeAccumulator = 0;
|
||||
for(int frame = 0; frame < frameCount; frame++){
|
||||
//get time at start
|
||||
@ -176,6 +182,7 @@ int fluid_sim_grid2_speed_test2(){
|
||||
printf("Density time (milli): %f \n",env->state.timeTracking.densityTotal);
|
||||
printf(" - Advect (milli): %f \n",env->state.timeTracking.densityAdvect);
|
||||
printf(" - Diffuse (milli): %f \n",env->state.timeTracking.densityDiffuse);
|
||||
printf(" - Maintenance (milli): %f \n",env->state.timeTracking.densityMaintenance);
|
||||
printf("\n");
|
||||
rVal++;
|
||||
}
|
||||
@ -191,7 +198,7 @@ int fluid_sim_grid2_speed_test3(){
|
||||
int rVal = 0;
|
||||
Environment * env = fluid_environment_create();
|
||||
Chunk ** queue = NULL;
|
||||
queue = createChunkGrid(env,5,5,5);
|
||||
queue = createChunkGrid(env,TARGET_SIM_DIAMETER,TARGET_SIM_DIAMETER,TARGET_SIM_DIAMETER);
|
||||
int chunkCount = arrlen(queue);
|
||||
|
||||
|
||||
@ -203,7 +210,7 @@ int fluid_sim_grid2_speed_test3(){
|
||||
float beforeSum = chunk_queue_sum_density(queue);
|
||||
|
||||
//actually simulate
|
||||
int frameCount = 50;
|
||||
int frameCount = TARGET_FPS;
|
||||
double frameTimeAccumulator = 0;
|
||||
for(int frame = 0; frame < frameCount; frame++){
|
||||
//get time at start
|
||||
@ -235,6 +242,7 @@ int fluid_sim_grid2_speed_test3(){
|
||||
printf("Density time (milli): %f \n",env->state.timeTracking.densityTotal);
|
||||
printf(" - Advect (milli): %f \n",env->state.timeTracking.densityAdvect);
|
||||
printf(" - Diffuse (milli): %f \n",env->state.timeTracking.densityDiffuse);
|
||||
printf(" - Maintenance (milli): %f \n",env->state.timeTracking.densityMaintenance);
|
||||
printf("\n");
|
||||
rVal++;
|
||||
}
|
||||
@ -248,9 +256,9 @@ int fluid_sim_grid2_speed_test3(){
|
||||
int fluid_sim_grid2_speed_tests(){
|
||||
int rVal = 0;
|
||||
|
||||
// rVal += fluid_sim_grid2_speed_test1();
|
||||
// rVal += fluid_sim_grid2_speed_test2();
|
||||
// rVal += fluid_sim_grid2_speed_test3();
|
||||
rVal += fluid_sim_grid2_speed_test1();
|
||||
rVal += fluid_sim_grid2_speed_test2();
|
||||
rVal += fluid_sim_grid2_speed_test3();
|
||||
|
||||
return rVal;
|
||||
}
|
||||
Loading…
Reference in New Issue
Block a user