#version 330 core #define NR_POINT_LIGHTS 10 out vec4 FragColor; layout (std140) uniform Lights { // this is how many because we have to align // bytes it SHOULD in multiples of 16, this // take it where it ACTUALLY is // //refer: https://learnopengl.com/Advanced-OpenGL/Advanced-GLSL // // base alignment aligned offset //direct light vec3 dLDirection; // 16 0 vec3 dLAmbient; // 16 16 vec3 dLDiffuse; // 16 32 vec3 dLSpecular; // 16 48 //point light vec3 pLposition[NR_POINT_LIGHTS]; // 16*10 64 float pLconstant[NR_POINT_LIGHTS]; // 16*10 224 float pLlinear[NR_POINT_LIGHTS]; // 16*10 384 float pLquadratic[NR_POINT_LIGHTS]; // 16*10 544 vec3 pLambient[NR_POINT_LIGHTS]; // 16*10 704 vec3 pLdiffuse[NR_POINT_LIGHTS]; // 16*10 864 vec3 pLspecular[NR_POINT_LIGHTS]; // 16*10 1024 //for a total size of 1184 }; struct Material { sampler2D diffuse; sampler2D specular; float shininess; }; in vec3 FragPos; in vec3 Normal; in vec2 texPlane1; in vec2 texPlane2; in vec2 texPlane3; in vec4 FragPosLightSpace; uniform vec3 viewPos; // uniform DirLight dirLight; // uniform PointLight pointLights[NR_POINT_LIGHTS]; // uniform SpotLight spotLight; uniform Material material; //texture stuff // uniform sampler2D ourTexture; uniform int hasTransparency; // uniform sampler2D specularTexture; //light depth map uniform sampler2D shadowMap; // function prototypes // vec3 CalcDirLight(vec3 normal, vec3 viewDir); // vec3 CalcPointLight(int i, vec3 normal, vec3 fragPos, vec3 viewDir); // vec3 CalcSpotLight(vec3 normal, vec3 fragPos, vec3 viewDir); float calcLightIntensityTotal(vec3 normal); float ShadowCalculation(vec4 fragPosLightSpace, vec3 lightDir, vec3 normal); vec3 getColor(vec2 texPlane1, vec2 texPlane2, vec2 texPlane3, vec3 normal, Material material); void main(){ vec3 norm = normalize(Normal); vec3 viewDir = normalize(viewPos - FragPos); //grab light intensity float lightIntensity = calcLightIntensityTotal(norm); //get color of base texture vec3 textureColor = vec3(0.6, 0.92, 0.92);//getColor(texPlane1, texPlane2, texPlane3, norm, material); //shadow float shadow = ShadowCalculation(FragPosLightSpace, normalize(-dLDirection), norm); //calculate final color vec3 finalColor = textureColor * lightIntensity * max(shadow,0.4); // vec3 lightAmount = CalcDirLight(norm, viewDir); // for(int i = 0; i < NR_POINT_LIGHTS; i++){ // lightAmount += CalcPointLight(i, norm, FragPos, viewDir); // } //this final calculation is for transparency FragColor = vec4(finalColor, 0.2); } vec3 getColor(vec2 texPlane1, vec2 texPlane2, vec2 texPlane3, vec3 normal, Material material){ vec3 weights = abs(normal); vec3 albedoX = texture(material.diffuse, texPlane1).rgb; vec3 albedoY = texture(material.diffuse, texPlane2).rgb; vec3 albedoZ = texture(material.diffuse, texPlane3).rgb; return (albedoX * weights.x + albedoY * weights.y + albedoZ * weights.z); } // float calcLightIntensityAmbient(){ //calculate average of ambient light float avg = (dLAmbient.x + dLAmbient.y + dLAmbient.z)/3.0; return avg; } // float calcLightIntensityDir(vec3 normal){ vec3 lightDir = normalize(-dLDirection); // diffuse shading float diff = max(dot(normal, lightDir), 0.0); return diff; } // float calcLightIntensityTotal(vec3 normal){ //ambient intensity float ambientLightIntensity = calcLightIntensityAmbient(); //get direct intensity float directLightIntensity = calcLightIntensityDir(normal); //sum float total = ambientLightIntensity + directLightIntensity; return total; } // vec3 getTotalLightColor(vec3 normal){ //get the direct light color adjusted for intensity vec3 diffuseLightColor = dLDiffuse * calcLightIntensityDir(normal); //sum light colors vec3 totalLightColor = diffuseLightColor; return totalLightColor; } vec3 CalcPointLight(int i, vec3 normal, vec3 fragPos, vec3 viewDir){ vec3 lightDir = normalize(pLposition[i] - fragPos); // diffuse shading float diff = max(dot(normal, lightDir), 0.0); // specular shading // vec3 reflectDir = reflect(-lightDir, normal); // float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess); // attenuation float distance = length(pLposition[i] - fragPos); float attenuation = 1.0 / (pLconstant[i] + pLlinear[i] * distance + pLquadratic[i] * (distance * distance)); // combine results vec3 ambient = pLambient[i]; vec3 diffuse = pLdiffuse[i] * diff; ambient *= attenuation; diffuse *= attenuation; // specular *= attenuation; vec3 specular = vec3(0,0,0); vec3 finalValue = (ambient + diffuse + specular); finalValue = vec3(max(finalValue.x,0),max(finalValue.y,0),max(finalValue.z,0)); return finalValue; } float ShadowCalculation(vec4 fragPosLightSpace, vec3 lightDir, vec3 normal){ // perform perspective divide vec3 projCoords = fragPosLightSpace.xyz / fragPosLightSpace.w; //transform to NDC projCoords = projCoords * 0.5 + 0.5; //get closest depth from light's POV float closestDepth = texture(shadowMap, projCoords.xy).r; //get depth of current fragment float currentDepth = projCoords.z; //calculate bias float bias = max(0.05 * (1.0 - dot(normal, lightDir)), 0.005); //calculate shadow value float shadow = currentDepth - bias > closestDepth ? 1.0 : 0.0; if(projCoords.z > 1.0){ shadow = 0.0; } //calculate dot product, if it is >0 we know they're parallel-ish therefore should disregard the shadow mapping //ie the fragment is already facing away from the light source float dotprod = dot(normalize(lightDir),normalize(normal)); if(dotprod > 0.0){ shadow = 0.0; } // shadow = currentDepth; return shadow; }