#version 330 core out vec4 FragColor; struct Material { sampler2D diffuse; sampler2D specular; float shininess; }; struct DirLight { vec3 direction; vec3 ambient; vec3 diffuse; vec3 specular; }; struct PointLight { vec3 position; float constant; float linear; float quadratic; vec3 ambient; vec3 diffuse; vec3 specular; }; struct SpotLight { vec3 position; vec3 direction; float cutOff; float outerCutOff; float constant; float linear; float quadratic; vec3 ambient; vec3 diffuse; vec3 specular; }; #define NR_POINT_LIGHTS 10 in vec3 FragPos; in vec3 Normal; in vec2 TexCoord; in vec4 FragPosLightSpace; uniform vec3 viewPos; uniform DirLight dirLight; uniform PointLight pointLights[NR_POINT_LIGHTS]; uniform SpotLight spotLight; uniform Material material; //texture stuff // uniform sampler2D ourTexture; uniform int hasTransparency; // uniform sampler2D specularTexture; //light depth map uniform sampler2D shadowMap; // function prototypes vec3 CalcDirLight(DirLight light, vec3 normal, vec3 viewDir); vec3 CalcPointLight(PointLight light, vec3 normal, vec3 fragPos, vec3 viewDir); vec3 CalcSpotLight(SpotLight light, vec3 normal, vec3 fragPos, vec3 viewDir); float ShadowCalculation(vec4 fragPosLightSpace, vec3 lightDir, vec3 normal); void main(){ if(hasTransparency == 1){ if(texture(material.diffuse, TexCoord).a < 0.1){ discard; } } vec3 norm = normalize(Normal); vec3 viewDir = normalize(viewPos - FragPos); vec3 result = CalcDirLight(dirLight, norm, viewDir); //for(int i = 0; i < NR_POINT_LIGHTS; i++){ // result += CalcPointLight(pointLights[i], norm, FragPos, viewDir); //} //result += CalcSpotLight(spotLight, norm, FragPos, viewDir); FragColor = vec4(result, texture(material.diffuse, TexCoord).a);//texture(ourTexture, TexCoord);//vec4(result, 1.0); } // calculates the color when using a directional light. vec3 CalcDirLight(DirLight light, vec3 normal, vec3 viewDir){ vec3 lightDir = normalize(-light.direction); // diffuse shading float diff = max(dot(normal, lightDir), 0.0); // specular shading vec3 reflectDir = reflect(-lightDir, normal); float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess); // combine results vec3 texColor = texture(material.diffuse, TexCoord).rgb; vec3 ambient = light.ambient; vec3 diffuse = light.diffuse * diff; //vec3 specular = light.specular * spec * vec3(texture(material.specular, TexCoord).rgb); float shadow = ShadowCalculation(FragPosLightSpace, lightDir, normal); return ( ambient + (1.0-shadow) * diffuse ) * texColor;// + specular); } // calculates the color when using a point light. vec3 CalcPointLight(PointLight light, vec3 normal, vec3 fragPos, vec3 viewDir){ vec3 lightDir = normalize(light.position - fragPos); // diffuse shading float diff = max(dot(normal, lightDir), 0.0); // specular shading vec3 reflectDir = reflect(-lightDir, normal); float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess); // attenuation float distance = length(light.position - fragPos); float attenuation = 1.0 / (light.constant + light.linear * distance + light.quadratic * (distance * distance)); // combine results vec3 ambient = light.ambient * vec4(texture(material.diffuse, TexCoord)).xyz; vec3 diffuse = light.diffuse * diff * vec4(texture(material.diffuse, TexCoord)).xyz; vec3 specular = light.specular * spec * vec4(texture(material.specular, TexCoord)).xyz; ambient *= attenuation; diffuse *= attenuation; specular *= attenuation; return (ambient + diffuse + specular); } // calculates the color when using a spot light. vec3 CalcSpotLight(SpotLight light, vec3 normal, vec3 fragPos, vec3 viewDir) { vec3 lightDir = normalize(light.position - fragPos); // diffuse shading float diff = max(dot(normal, lightDir), 0.0); // specular shading vec3 reflectDir = reflect(-lightDir, normal); float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess); // attenuation float distance = length(light.position - fragPos); float attenuation = 1.0 / (light.constant + light.linear * distance + light.quadratic * (distance * distance)); // spotlight intensity float theta = dot(lightDir, normalize(-light.direction)); float epsilon = light.cutOff - light.outerCutOff; float intensity = clamp((theta - light.outerCutOff) / epsilon, 0.0, 1.0); // combine results vec3 ambient = light.ambient * vec3(texture(material.diffuse, TexCoord)); vec3 diffuse = light.diffuse * diff * vec3(texture(material.diffuse, TexCoord)); vec3 specular = light.specular * spec * vec3(texture(material.specular, TexCoord)); ambient *= attenuation * intensity; diffuse *= attenuation * intensity; specular *= attenuation * intensity; return (ambient + diffuse + specular); } float ShadowCalculation(vec4 fragPosLightSpace, vec3 lightDir, vec3 normal){ // perform perspective divide vec3 projCoords = fragPosLightSpace.xyz / fragPosLightSpace.w; //transform to NDC projCoords = projCoords * 0.5 + 0.5; //get closest depth from light's POV float closestDepth = texture(shadowMap, projCoords.xy).r; //get depth of current fragment float currentDepth = projCoords.z; //calculate bias float bias = max(0.05 * (1.0 - dot(normal, lightDir)), 0.005); //calculate shadow value float shadow = currentDepth - bias > closestDepth ? 1.0 : 0.0; if(projCoords.z > 1.0){ shadow = 0.0; } //calculate dot product, if it is >0 we know they're parallel-ish therefore should disregard the shadow mapping //ie the fragment is already facing away from the light source float dotprod = dot(normalize(lightDir),normalize(normal)); if(dotprod > 0.0){ shadow = 0.0; } // shadow = currentDepth; return shadow; }