#version 450 core //foliage.fs /** Bind points for different SSBOs */ #define CLUSTER_SSBO_BIND_POINT 1 #define POINT_LIGHT_SSBO_BIND_POINT 2 #define DIRECT_LIGHT_SSBO_BIND_POINT 3 /** Maximum number of point lights */ #define MAX_POINT_LIGHTS 512 /** Maximum number of lights per cluster */ #define MAX_LIGHTS_PER_CLUSTER 100 /** The direct global light */ struct DirectLight { vec3 direction; vec3 color; }; /** A point light */ struct PointLight { vec4 position; vec4 color; float constant; float linear; float quadratic; float radius; }; /** A light cluster */ struct Cluster { vec4 minPoint; vec4 maxPoint; uint count; uint lightIndices[MAX_LIGHTS_PER_CLUSTER]; }; layout (location = 0) out vec4 accum; layout (location = 1) out float reveal; layout(std430, binding = CLUSTER_SSBO_BIND_POINT) restrict buffer clusterGridSSBO { Cluster clusters[]; }; layout(std430, binding = POINT_LIGHT_SSBO_BIND_POINT) restrict buffer pointLightSSBO { PointLight pointLight[]; }; layout(std430, binding = DIRECT_LIGHT_SSBO_BIND_POINT) restrict buffer dirLightSSBO { DirectLight directLight; }; struct Material { sampler2D diffuse; sampler2D specular; float shininess; }; in vec3 FragPos; in vec3 ViewFragPos; in vec3 Normal; in vec2 TexCoord; in vec4 FragPosLightSpace; in vec4 color; uniform vec3 viewPos; // uniform DirLight dirLight; // uniform PointLight pointLights[NR_POINT_LIGHTS]; // uniform SpotLight spotLight; uniform Material material; //texture stuff // uniform sampler2D ourTexture; uniform int hasTransparency; // uniform sampler2D specularTexture; //light depth map uniform sampler2D shadowMap; /** Used for light cluster calculation */ uniform float zNear; uniform float zFar; uniform uvec3 gridSize; uniform uvec2 screenDimensions; uniform mat4 view; // function prototypes uint findCluster(vec3 FragPos, float zNear, float zFar); vec3 CalcPointLight(PointLight pointLight, vec3 normal, vec3 fragPos, vec3 viewDir); float calcLightIntensityTotal(vec3 normal); float ShadowCalculation(vec4 fragPosLightSpace, vec3 lightDir, vec3 normal); float easeIn(float interpolator); float easeOut(float interpolator); void main(){ vec3 viewDir = normalize(viewPos - FragPos); //grab light intensity vec3 lightIntensity = vec3(calcLightIntensityTotal(Normal)); //get color of base texture // vec3 textureColor = vec3((norm.x + 1) / 2.0, norm.y, 1.0 - (norm.x + 1) / 2.0); vec4 textureColor = texture(material.diffuse,TexCoord); // vec3 textureColor = vec3(0.17647,0.4,0.09411);//texture(material.diffuse, TexCoord).rgb; //shadow float shadow = ShadowCalculation(FragPosLightSpace, normalize(-directLight.direction), Normal); // //point light calculations uint clusterIndex = findCluster(ViewFragPos, zNear, zFar); uint pointLightCount = clusters[clusterIndex].count; for(int i = 0; i < pointLightCount; i++){ uint pointLightIndex = clusters[clusterIndex].lightIndices[i]; PointLight pointLight = pointLight[pointLightIndex]; lightIntensity = lightIntensity + CalcPointLight(pointLight, Normal, FragPos, viewDir); } //error checking on light clusters if(pointLightCount > MAX_LIGHTS_PER_CLUSTER){ accum = vec4(1.0f,0.0f,0.0f,1); reveal = textureColor.a; return; } //calculate final color vec4 finalColor = textureColor.rgba * vec4(lightIntensity,1.0);// * max(shadow,0.4); // vec3 lightAmount = CalcDirLight(norm, viewDir); // for(int i = 0; i < NR_POINT_LIGHTS; i++){ // lightAmount += CalcPointLight(i, norm, FragPos, viewDir); // } //calculate weight function float weight = clamp(pow(min(1.0, finalColor.a * 10.0) + 0.01, 3.0) * 1e8 * pow(1.0 - gl_FragCoord.z * 0.9, 3.0), 1e-2, 3e3); //emit colors accum = vec4(finalColor.rgb * finalColor.a, finalColor.a) * weight; reveal = finalColor.a; } // calculates the color when using a directional light. // vec3 CalcDirLight(vec3 normal, vec3 viewDir){ // vec3 lightDir = normalize(-dLDirection); // // diffuse shading // float diff = max(dot(normal, lightDir), 0.0); // // specular shading // // vec3 reflectDir = reflect(-lightDir, normal); // // float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess); // // combine results // vec3 texColor = texture(material.diffuse, TexCoord).rgb; // vec3 diffuse = dLDiffuse * diff; // //vec3 specular = light.specular * spec * vec3(texture(material.specular, TexCoord).rgb); // float shadow = ShadowCalculation(FragPosLightSpace, lightDir, normal); // return ( dLAmbient + (1.0-shadow) * diffuse ) * texColor;// + specular); // } // float calcLightIntensityAmbient(){ //calculate average of ambient light float avg = (directLight.color.x + directLight.color.y + directLight.color.z)/3.0; return avg; } // float calcLightIntensityDir(vec3 normal){ vec3 lightDir = normalize(-directLight.direction); // diffuse shading float diff = max(dot(normal, lightDir), 0.0); return diff; } // float calcLightIntensityTotal(vec3 normal){ //ambient intensity float ambientLightIntensity = calcLightIntensityAmbient(); //get direct intensity float directLightIntensity = calcLightIntensityDir(normal); //sum float total = ambientLightIntensity + directLightIntensity; return total; } // vec3 getTotalLightColor(vec3 normal){ //get the direct light color adjusted for intensity vec3 diffuseLightColor = directLight.color * calcLightIntensityDir(normal); //sum light colors vec3 totalLightColor = diffuseLightColor; return totalLightColor; } vec3 CalcPointLight(PointLight pointLight, vec3 normal, vec3 fragPos, vec3 viewDir){ vec3 lightDir = normalize(pointLight.position.xyz - fragPos); // diffuse shading float diff = max(dot(normal, lightDir), 0.0); // specular shading // vec3 reflectDir = reflect(-lightDir, normal); // float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess); // attenuation float distance = length(pointLight.position.xyz - fragPos); float attenuation = 1.0 / (pointLight.constant + pointLight.linear * distance + pointLight.quadratic * (distance * distance)); if(distance > pointLight.radius){ attenuation = 0; } // combine results vec3 ambient = pointLight.color.xyz;// * vec4(texture(material.diffuse, TexCoord)).xyz; vec3 diffuse = pointLight.color.xyz * diff;// * vec4(texture(material.diffuse, TexCoord)).xyz; // vec3 specular = pLspecular[i] * spec;// * vec4(texture(material.specular, TexCoord)).xyz; ambient = ambient * attenuation; diffuse = diffuse * attenuation; // specular *= attenuation; vec3 specular = vec3(0,0,0); vec3 finalValue = vec3(0); if(distance < pointLight.radius){ finalValue = (ambient + diffuse + specular); finalValue = vec3(max(finalValue.x,0),max(finalValue.y,0),max(finalValue.z,0)); } return finalValue; } /** Finds the light cluster this fragment belongs to */ uint findCluster(vec3 viewspaceFragPos, float zNear, float zFar){ uint zTile = uint((log(abs(viewspaceFragPos.z) / zNear) * gridSize.z) / log(zFar / zNear)); vec2 tileSize = screenDimensions / gridSize.xy; uvec3 tile = uvec3(gl_FragCoord.xy / tileSize, zTile); return tile.x + (tile.y * gridSize.x) + (tile.z * gridSize.x * gridSize.y); } float ShadowCalculation(vec4 fragPosLightSpace, vec3 lightDir, vec3 normal){ // perform perspective divide vec3 projCoords = fragPosLightSpace.xyz / fragPosLightSpace.w; //transform to NDC projCoords = projCoords * 0.5 + 0.5; //get closest depth from light's POV float closestDepth = texture(shadowMap, projCoords.xy).r; //get depth of current fragment float currentDepth = projCoords.z; //calculate bias float bias = max(0.05 * (1.0 - dot(normal, lightDir)), 0.005); //calculate shadow value float shadow = currentDepth - bias > closestDepth ? 1.0 : 0.0; if(projCoords.z > 1.0){ shadow = 0.0; } //calculate dot product, if it is >0 we know they're parallel-ish therefore should disregard the shadow mapping //ie the fragment is already facing away from the light source float dotprod = dot(normalize(lightDir),normalize(normal)); if(dotprod > 0.0){ shadow = 0.0; } // shadow = currentDepth; return shadow; } float easeIn(float interpolator){ return interpolator * interpolator; } float easeOut(float interpolator){ return 1 - easeIn(1 - interpolator); }