#version 400 core #define NR_POINT_LIGHTS 10 layout (location = 0) out vec4 accum; layout (location = 1) out float reveal; layout (std140) uniform Lights { // this is how many because we have to align // bytes it SHOULD in multiples of 16, this // take it where it ACTUALLY is // //refer: https://learnopengl.com/Advanced-OpenGL/Advanced-GLSL // // base alignment aligned offset //direct light vec3 dLDirection; // 16 0 vec3 dLAmbient; // 16 16 vec3 dLDiffuse; // 16 32 vec3 dLSpecular; // 16 48 //point light vec3 pLposition[NR_POINT_LIGHTS]; // 16*10 64 float pLconstant[NR_POINT_LIGHTS]; // 16*10 224 float pLlinear[NR_POINT_LIGHTS]; // 16*10 384 float pLquadratic[NR_POINT_LIGHTS]; // 16*10 544 vec3 pLambient[NR_POINT_LIGHTS]; // 16*10 704 vec3 pLdiffuse[NR_POINT_LIGHTS]; // 16*10 864 vec3 pLspecular[NR_POINT_LIGHTS]; // 16*10 1024 //for a total size of 1184 }; struct Material { sampler2D diffuse; sampler2D specular; float shininess; }; //inputs in vec3 FragPos; in vec3 Normal; in vec2 TexCoord; in vec4 FragPosLightSpace; //view position uniform vec3 viewPos; //material uniform Material material; //light depth map uniform sampler2D shadowMap; //function prototypes float calcLightIntensityTotal(vec3 normal); float ShadowCalculation(vec4 fragPosLightSpace, vec3 lightDir, vec3 normal); float linearizeDepth(float d,float zNear,float zFar); float weightCalcOrigin(float finalAlpha, float zLoc, float linearizedLoc); float weightCalcFlat(float finalAlpha, float zLoc, float linearizedLoc); float weightCalcNew(float finalAlpha, float zLoc, float linearizedLoc); void main(){ vec3 norm = normalize(Normal); vec3 viewDir = normalize(viewPos - FragPos); //grab light intensity float lightIntensity = calcLightIntensityTotal(norm); //get color of base texture vec4 textureColor = texture(material.diffuse, TexCoord); vec3 textureRGB = textureColor.rgb; //shadow float shadow = ShadowCalculation(FragPosLightSpace, normalize(-dLDirection), norm); vec3 shadowModifiedColor = textureRGB * lightIntensity * max(shadow, 0.4); //calculate final color vec4 finalColor = vec4(shadowModifiedColor,textureColor.a); //calculate weight function float linearizedDepth = linearizeDepth(gl_FragCoord.z,0.001f,20000f); float weight = weightCalcNew(finalColor.a,gl_FragCoord.z,linearizedDepth); //emit colors accum = vec4(finalColor.rgb * finalColor.a, finalColor.a) * weight; reveal = finalColor.a; } //a weight calculation float weightCalcOrigin(float finalAlpha, float zLoc, float linearizedLoc){ float weight = clamp(pow(min(1.0, finalAlpha * 10.0) + 0.01, 3.0) * 1e8 * pow(1.0 - zLoc * 0.9, 3.0), 1e-2, 3e3); return weight; } //a weight calculation float weightCalcFlat(float finalAlpha, float zLoc, float linearizedLoc){ return 0.1f; } //a weight calculation float weightCalcNew(float finalAlpha, float zLoc, float linearizedLoc){ float alphaComponent = pow(min(1.0, finalAlpha * 10.0) + 0.01, 3.0); float zComponent = pow(1.0 - zLoc * 0.9, 3.0); float weightRaw = alphaComponent * 1e8 * zComponent; float weight = clamp(weightRaw, 1e-2, 3e3); return weight; } //Linearizes the depth float linearizeDepth(float d,float zNear,float zFar){ return zNear * zFar / (zFar + d * (zNear - zFar)); } float calcLightIntensityAmbient(){ //calculate average of ambient light float avg = (dLAmbient.x + dLAmbient.y + dLAmbient.z)/3.0; return avg; } // float calcLightIntensityDir(vec3 normal){ vec3 lightDir = normalize(-dLDirection); // diffuse shading float diff = max(dot(normal, lightDir), 0.0); return diff; } // float calcLightIntensityTotal(vec3 normal){ //ambient intensity float ambientLightIntensity = calcLightIntensityAmbient(); //get direct intensity float directLightIntensity = calcLightIntensityDir(normal); //sum float total = ambientLightIntensity + directLightIntensity; return total; } // vec3 getTotalLightColor(vec3 normal){ //get the direct light color adjusted for intensity vec3 diffuseLightColor = dLDiffuse * calcLightIntensityDir(normal); //sum light colors vec3 totalLightColor = diffuseLightColor; return totalLightColor; } vec3 CalcPointLight(int i, vec3 normal, vec3 fragPos, vec3 viewDir){ vec3 lightDir = normalize(pLposition[i] - fragPos); // diffuse shading float diff = max(dot(normal, lightDir), 0.0); // specular shading // vec3 reflectDir = reflect(-lightDir, normal); // float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess); // attenuation float distance = length(pLposition[i] - fragPos); float attenuation = 1.0 / (pLconstant[i] + pLlinear[i] * distance + pLquadratic[i] * (distance * distance)); // combine results vec3 ambient = pLambient[i];// * vec4(texture(material.diffuse, TexCoord)).xyz; vec3 diffuse = pLdiffuse[i] * diff;// * vec4(texture(material.diffuse, TexCoord)).xyz; // vec3 specular = pLspecular[i] * spec;// * vec4(texture(material.specular, TexCoord)).xyz; ambient *= attenuation; diffuse *= attenuation; // specular *= attenuation; vec3 specular = vec3(0,0,0); vec3 finalValue = (ambient + diffuse + specular); finalValue = vec3(max(finalValue.x,0),max(finalValue.y,0),max(finalValue.z,0)); return finalValue; } float ShadowCalculation(vec4 fragPosLightSpace, vec3 lightDir, vec3 normal){ // perform perspective divide vec3 projCoords = fragPosLightSpace.xyz / fragPosLightSpace.w; //transform to NDC projCoords = projCoords * 0.5 + 0.5; //get closest depth from light's POV float closestDepth = texture(shadowMap, projCoords.xy).r; //get depth of current fragment float currentDepth = projCoords.z; //calculate bias float bias = max(0.05 * (1.0 - dot(normal, lightDir)), 0.005); //calculate shadow value float shadow = currentDepth - bias > closestDepth ? 1.0 : 0.0; if(projCoords.z > 1.0){ shadow = 0.0; } //calculate dot product, if it is >0 we know they're parallel-ish therefore should disregard the shadow mapping //ie the fragment is already facing away from the light source float dotprod = dot(normalize(lightDir),normalize(normal)); if(dotprod > 0.0){ shadow = 0.0; } // shadow = currentDepth; return shadow; }