#version 450 core //texture defines #define ATLAS_ELEMENT_DIM 256.0 #define ATLAS_DIM 8192.0 #define ATLAS_EL_PER_ROW 32 #define ATLAS_NORMALIZED_ELEMENT_WIDTH 0.031 //within the single texture within the atlas, we use this so we never go over the end of the texture #define ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL 0.03125 //used to properly shift from texture to texture in the atlas /** Bind points for different SSBOs */ #define CLUSTER_SSBO_BIND_POINT 1 #define POINT_LIGHT_SSBO_BIND_POINT 2 #define DIRECT_LIGHT_SSBO_BIND_POINT 3 /** Maximum number of point lights */ #define MAX_POINT_LIGHTS 512 /** Maximum number of lights per cluster */ #define MAX_LIGHTS_PER_CLUSTER 100 /** The direct global light */ struct DirectLight { vec3 direction; vec3 color; }; /** A point light */ struct PointLight { vec4 position; vec4 color; float constant; float linear; float quadratic; float radius; }; /** A light cluster */ struct Cluster { vec4 minPoint; vec4 maxPoint; uint count; uint lightIndices[MAX_LIGHTS_PER_CLUSTER]; }; out vec4 FragColor; layout(std430, binding = CLUSTER_SSBO_BIND_POINT) restrict buffer clusterGridSSBO { Cluster clusters[]; }; layout(std430, binding = POINT_LIGHT_SSBO_BIND_POINT) restrict buffer pointLightSSBO { PointLight pointLight[]; }; layout(std430, binding = DIRECT_LIGHT_SSBO_BIND_POINT) restrict buffer dirLightSSBO { DirectLight directLight; }; struct Material { sampler2D diffuse; sampler2D specular; float shininess; }; in vec3 FragPos; in vec3 ViewFragPos; in vec3 Normal; in vec2 texPlane1; in vec2 texPlane2; in vec2 texPlane3; in vec4 FragPosLightSpace; in vec3 samplerIndexVec; //the indices in the atlas of textures to sample in vec3 samplerRatioVec; //the vector of HOW MUCH to pull from each texture in the atlas uniform vec3 viewPos; // uniform DirLight dirLight; // uniform PointLight pointLights[NR_POINT_LIGHTS]; // uniform SpotLight spotLight; uniform Material material; //texture stuff // uniform sampler2D ourTexture; uniform int hasTransparency; // uniform sampler2D specularTexture; //light depth map uniform sampler2D shadowMap; /** Used for light cluster calculation */ uniform float zNear; uniform float zFar; uniform uvec3 gridSize; uniform uvec2 screenDimensions; uniform mat4 view; // function prototypes uint findCluster(vec3 FragPos, float zNear, float zFar); vec3 CalcPointLight(PointLight pointLight, vec3 normal, vec3 fragPos, vec3 viewDir); float calcLightIntensityTotal(vec3 normal); float ShadowCalculation(vec4 fragPosLightSpace, vec3 lightDir, vec3 normal); vec3 getColor(vec2 texPlane1, vec2 texPlane2, vec2 texPlane3, vec3 normal, vec3 samplerIndexVec, vec3 samplerRatioVec, Material material); void main(){ vec3 norm = normalize(Normal); vec3 viewDir = normalize(viewPos - FragPos); //grab light intensity vec3 lightIntensity = vec3(calcLightIntensityTotal(norm)); //get color of base texture vec3 textureColor = getColor(texPlane1, texPlane2, texPlane3, norm, samplerIndexVec, samplerRatioVec, material); //shadow float shadow = ShadowCalculation(FragPosLightSpace, normalize(-directLight.direction), -norm); // //point light calculations uint clusterIndex = findCluster(ViewFragPos, zNear, zFar); uint pointLightCount = clusters[clusterIndex].count; for(int i = 0; i < pointLightCount; i++){ uint pointLightIndex = clusters[clusterIndex].lightIndices[i]; PointLight pointLight = pointLight[pointLightIndex]; lightIntensity = lightIntensity + CalcPointLight(pointLight, norm, FragPos, viewDir); } //error checking on light clusters if(pointLightCount > MAX_LIGHTS_PER_CLUSTER){ FragColor = vec4(1.0f,0.0f,0.0f,1); return; } //calculate final color vec3 finalColor = textureColor * lightIntensity * max(shadow,0.4); //this final calculation is for transparency FragColor = vec4(finalColor, 1); } /** * The function that gets the texture color based on the triplanar texture mapping and the voxel type at each point along the vert. * See the triplanar mapping wiki article for an explanation of math involved. */ vec3 getColor(vec2 texPlane1, vec2 texPlane2, vec2 texPlane3, vec3 normal, vec3 samplerIndexVec, vec3 samplerRatioVec, Material material){ vec3 weights = abs(normal); //what is the index in the atlas of the texture for a given vertex int vert1AtlasIndex = int(samplerIndexVec.x); int vert2AtlasIndex = int(samplerIndexVec.y); int vert3AtlasIndex = int(samplerIndexVec.z); //what is the weight of that texture relative to the fragment float vert1Weight = samplerRatioVec.x; float vert2Weight = samplerRatioVec.y; float vert3Weight = samplerRatioVec.z; //the x-wise uv of the texture for vert1 vec2 vert1_x_uv = vec2( (fract(texPlane1.x) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (mod(samplerIndexVec.x,ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL), (fract(texPlane1.y) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (round(samplerIndexVec.x / ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL) ); //the x-wise uv of the texture for vert2 vec2 vert2_x_uv = vec2( (fract(texPlane1.x) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (mod(samplerIndexVec.y,ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL), (fract(texPlane1.y) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (round(samplerIndexVec.y / ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL) ); //the x-wise uv of the texture for vert3 vec2 vert3_x_uv = vec2( (fract(texPlane1.x) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (mod(samplerIndexVec.z,ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL), (fract(texPlane1.y) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (round(samplerIndexVec.z / ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL) ); //albedo for the X texture vec3 albedoX = texture(material.diffuse, vert1_x_uv).rgb * vert1Weight + texture(material.diffuse, vert2_x_uv).rgb * vert2Weight + texture(material.diffuse, vert3_x_uv).rgb * vert3Weight; //the y-wise uv of the texture for vert1 vec2 vert1_y_uv = vec2( (fract(texPlane2.x) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (mod(samplerIndexVec.x,ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL), (fract(texPlane2.y) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (round(samplerIndexVec.x / ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL) ); //the y-wise uv of the texture for vert2 vec2 vert2_y_uv = vec2( (fract(texPlane2.x) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (mod(samplerIndexVec.y,ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL), (fract(texPlane2.y) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (round(samplerIndexVec.y / ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL) ); //the y-wise uv of the texture for vert3 vec2 vert3_y_uv = vec2( (fract(texPlane2.x) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (mod(samplerIndexVec.z,ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL), (fract(texPlane2.y) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (round(samplerIndexVec.z / ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL) ); //albedo for the X texture vec3 albedoY = texture(material.diffuse, vert1_y_uv).rgb * vert1Weight + texture(material.diffuse, vert2_y_uv).rgb * vert2Weight + texture(material.diffuse, vert3_y_uv).rgb * vert3Weight; //the z-wise uv of the texture for vert1 vec2 vert1_z_uv = vec2( (fract(texPlane3.x) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (mod(samplerIndexVec.x,ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL), (fract(texPlane3.y) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (round(samplerIndexVec.x / ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL) ); //the z-wise uv of the texture for vert2 vec2 vert2_z_uv = vec2( (fract(texPlane3.x) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (mod(samplerIndexVec.y,ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL), (fract(texPlane3.y) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (round(samplerIndexVec.y / ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL) ); //the z-wise uv of the texture for vert3 vec2 vert3_z_uv = vec2( (fract(texPlane3.x) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (mod(samplerIndexVec.z,ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL), (fract(texPlane3.y) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (round(samplerIndexVec.z / ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL) ); //albedo for the X texture vec3 albedoZ = texture(material.diffuse, vert1_z_uv).rgb * vert1Weight + texture(material.diffuse, vert2_z_uv).rgb * vert2Weight + texture(material.diffuse, vert3_z_uv).rgb * vert3Weight; return (albedoX * weights.x + albedoY * weights.y + albedoZ * weights.z); } // float calcLightIntensityAmbient(){ //calculate average of ambient light float avg = (directLight.color.x + directLight.color.y + directLight.color.z)/3.0; return avg; } // float calcLightIntensityDir(vec3 normal){ vec3 lightDir = normalize(-directLight.direction); // diffuse shading float diff = max(dot(normal, lightDir), 0.0); return diff; } // float calcLightIntensityTotal(vec3 normal){ //ambient intensity float ambientLightIntensity = calcLightIntensityAmbient(); //get direct intensity float directLightIntensity = calcLightIntensityDir(normal); //sum float total = ambientLightIntensity + directLightIntensity; return total; } // vec3 getTotalLightColor(vec3 normal){ //get the direct light color adjusted for intensity vec3 diffuseLightColor = directLight.color * calcLightIntensityDir(normal); //sum light colors vec3 totalLightColor = diffuseLightColor; return totalLightColor; } vec3 CalcPointLight(PointLight pointLight, vec3 normal, vec3 fragPos, vec3 viewDir){ vec3 lightDir = normalize(pointLight.position.xyz - fragPos); // diffuse shading float diff = max(dot(normal, lightDir), 0.0); // specular shading // vec3 reflectDir = reflect(-lightDir, normal); // float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess); // attenuation float distance = length(pointLight.position.xyz - fragPos); float attenuation = 1.0 / (pointLight.constant + pointLight.linear * distance + pointLight.quadratic * (distance * distance)); if(distance > pointLight.radius){ attenuation = 0; } // combine results vec3 ambient = pointLight.color.xyz;// * vec4(texture(material.diffuse, TexCoord)).xyz; vec3 diffuse = pointLight.color.xyz * diff;// * vec4(texture(material.diffuse, TexCoord)).xyz; // vec3 specular = pLspecular[i] * spec;// * vec4(texture(material.specular, TexCoord)).xyz; ambient = ambient * attenuation; diffuse = diffuse * attenuation; // specular *= attenuation; vec3 specular = vec3(0,0,0); vec3 finalValue = vec3(0); if(distance < pointLight.radius){ finalValue = (ambient + diffuse + specular); finalValue = vec3(max(finalValue.x,0),max(finalValue.y,0),max(finalValue.z,0)); } return finalValue; } /** Finds the light cluster this fragment belongs to */ uint findCluster(vec3 viewspaceFragPos, float zNear, float zFar){ uint zTile = uint((log(abs(viewspaceFragPos.z) / zNear) * gridSize.z) / log(zFar / zNear)); vec2 tileSize = screenDimensions / gridSize.xy; uvec3 tile = uvec3(gl_FragCoord.xy / tileSize, zTile); return tile.x + (tile.y * gridSize.x) + (tile.z * gridSize.x * gridSize.y); } float ShadowCalculation(vec4 fragPosLightSpace, vec3 lightDir, vec3 normal){ // perform perspective divide vec3 projCoords = fragPosLightSpace.xyz / fragPosLightSpace.w; //transform to NDC projCoords = projCoords * 0.5 + 0.5; //get closest depth from light's POV float closestDepth = texture(shadowMap, projCoords.xy).r; //get depth of current fragment float currentDepth = projCoords.z; //calculate bias float bias = max(0.05 * (1.0 - dot(normal, lightDir)), 0.005); //calculate shadow value float shadow = currentDepth - bias > closestDepth ? 1.0 : 0.0; if(projCoords.z > 1.0){ shadow = 0.0; } //calculate dot product, if it is >0 we know they're parallel-ish therefore should disregard the shadow mapping //ie the fragment is already facing away from the light source float dotprod = dot(normalize(lightDir),normalize(normal)); if(dotprod > 0.0){ shadow = 0.0; } // shadow = currentDepth; return clamp(1.0 - shadow, 0.0, 0.7); }