Renderer/assets/Shaders/FragmentShader.fs
2022-06-06 18:11:05 -04:00

248 lines
8.3 KiB
GLSL

#version 330 core
#define NR_POINT_LIGHTS 10
out vec4 FragColor;
layout (std140) uniform Lights {
// this is how many because we have to align
// bytes it SHOULD in multiples of 16, this
// take it where it ACTUALLY is
//
//refer: https://learnopengl.com/Advanced-OpenGL/Advanced-GLSL
//
// base alignment aligned offset
//direct light
vec3 dLDirection; // 16 0
vec3 dLAmbient; // 16 16
vec3 dLDiffuse; // 16 32
vec3 dLSpecular; // 16 48
//point light
vec3 pLposition[NR_POINT_LIGHTS]; // 16*10 64
float pLconstant[NR_POINT_LIGHTS]; // 16*10 224
float pLlinear[NR_POINT_LIGHTS]; // 16*10 384
float pLquadratic[NR_POINT_LIGHTS]; // 16*10 544
vec3 pLambient[NR_POINT_LIGHTS]; // 16*10 704
vec3 pLdiffuse[NR_POINT_LIGHTS]; // 16*10 864
vec3 pLspecular[NR_POINT_LIGHTS]; // 16*10 1024
//for a total size of 1184
};
struct Material {
sampler2D diffuse;
sampler2D specular;
float shininess;
};
in vec3 FragPos;
in vec3 Normal;
in vec2 TexCoord;
in vec4 FragPosLightSpace;
uniform vec3 viewPos;
// uniform DirLight dirLight;
// uniform PointLight pointLights[NR_POINT_LIGHTS];
// uniform SpotLight spotLight;
uniform Material material;
//texture stuff
// uniform sampler2D ourTexture;
uniform int hasTransparency;
// uniform sampler2D specularTexture;
//light depth map
uniform sampler2D shadowMap;
// function prototypes
// vec3 CalcDirLight(vec3 normal, vec3 viewDir);
// vec3 CalcPointLight(int i, vec3 normal, vec3 fragPos, vec3 viewDir);
// vec3 CalcSpotLight(vec3 normal, vec3 fragPos, vec3 viewDir);
float calcLightIntensityTotal(vec3 normal);
float ShadowCalculation(vec4 fragPosLightSpace, vec3 lightDir, vec3 normal);
void main(){
if(hasTransparency == 1){
if(texture(material.diffuse, TexCoord).a < 0.1){
discard;
}
}
vec3 norm = normalize(Normal);
vec3 viewDir = normalize(viewPos - FragPos);
//grab light intensity
float lightIntensity = calcLightIntensityTotal(norm);
//get color of base texture
vec3 textureColor = texture(material.diffuse, TexCoord).rgb;
//shadow
float shadow = ShadowCalculation(FragPosLightSpace, normalize(-dLDirection), norm);
//calculate final color
vec3 finalColor = textureColor * lightIntensity * max(shadow,0.4);
// vec3 lightAmount = CalcDirLight(norm, viewDir);
// for(int i = 0; i < NR_POINT_LIGHTS; i++){
// lightAmount += CalcPointLight(i, norm, FragPos, viewDir);
// }
//this final calculation is for transparency
FragColor = vec4(finalColor, texture(material.diffuse, TexCoord).a);//texture(ourTexture, TexCoord);//vec4(result, 1.0);
}
// calculates the color when using a directional light.
// vec3 CalcDirLight(vec3 normal, vec3 viewDir){
// vec3 lightDir = normalize(-dLDirection);
// // diffuse shading
// float diff = max(dot(normal, lightDir), 0.0);
// // specular shading
// // vec3 reflectDir = reflect(-lightDir, normal);
// // float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
// // combine results
// vec3 texColor = texture(material.diffuse, TexCoord).rgb;
// vec3 diffuse = dLDiffuse * diff;
// //vec3 specular = light.specular * spec * vec3(texture(material.specular, TexCoord).rgb);
// float shadow = ShadowCalculation(FragPosLightSpace, lightDir, normal);
// return ( dLAmbient + (1.0-shadow) * diffuse ) * texColor;// + specular);
// }
//
float calcLightIntensityAmbient(){
//calculate average of ambient light
float avg = (dLAmbient.x + dLAmbient.y + dLAmbient.z)/3.0;
return avg;
}
//
float calcLightIntensityDir(vec3 normal){
vec3 lightDir = normalize(-dLDirection);
// diffuse shading
float diff = max(dot(normal, lightDir), 0.0);
//clamp for cel shading
if(diff > 0.1){
diff = 0.3;
} else {
diff = diff * 3.0;
}
return diff;
}
//
float calcLightIntensityTotal(vec3 normal){
//ambient intensity
float ambientLightIntensity = calcLightIntensityAmbient();
//get direct intensity
float directLightIntensity = calcLightIntensityDir(normal);
//sum
float total = ambientLightIntensity + directLightIntensity;
return total;
}
//
vec3 getTotalLightColor(vec3 normal){
//get the direct light color adjusted for intensity
vec3 diffuseLightColor = dLDiffuse * calcLightIntensityDir(normal);
//sum light colors
vec3 totalLightColor = diffuseLightColor;
return totalLightColor;
}
vec3 CalcPointLight(int i, vec3 normal, vec3 fragPos, vec3 viewDir){
vec3 lightDir = normalize(pLposition[i] - fragPos);
// diffuse shading
float diff = max(dot(normal, lightDir), 0.0);
// specular shading
// vec3 reflectDir = reflect(-lightDir, normal);
// float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
// attenuation
float distance = length(pLposition[i] - fragPos);
float attenuation = 1.0 / (pLconstant[i] + pLlinear[i] * distance + pLquadratic[i] * (distance * distance));
// combine results
vec3 ambient = pLambient[i];// * vec4(texture(material.diffuse, TexCoord)).xyz;
vec3 diffuse = pLdiffuse[i] * diff;// * vec4(texture(material.diffuse, TexCoord)).xyz;
// vec3 specular = pLspecular[i] * spec;// * vec4(texture(material.specular, TexCoord)).xyz;
ambient *= attenuation;
diffuse *= attenuation;
// specular *= attenuation;
vec3 specular = vec3(0,0,0);
vec3 finalValue = (ambient + diffuse + specular);
finalValue = vec3(max(finalValue.x,0),max(finalValue.y,0),max(finalValue.z,0));
return finalValue;
}
// // calculates the color when using a point light.
// vec3 CalcPointLight(int i, vec3 normal, vec3 fragPos, vec3 viewDir){
// vec3 lightDir = normalize(pLposition[i] - fragPos);
// // diffuse shading
// float diff = max(dot(normal, lightDir), 0.0);
// // specular shading
// // vec3 reflectDir = reflect(-lightDir, normal);
// // float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
// // attenuation
// float distance = length(pLposition[i] - fragPos);
// float attenuation = 1.0 / (pLconstant[i] + pLlinear[i] * distance + pLquadratic[i] * (distance * distance));
// // combine results
// vec3 ambient = pLambient[i];// * vec4(texture(material.diffuse, TexCoord)).xyz;
// vec3 diffuse = pLdiffuse[i] * diff;// * vec4(texture(material.diffuse, TexCoord)).xyz;
// // vec3 specular = pLspecular[i] * spec;// * vec4(texture(material.specular, TexCoord)).xyz;
// ambient *= attenuation;
// diffuse *= attenuation;
// // specular *= attenuation;
// vec3 specular = vec3(0,0,0);
// vec3 finalValue = (ambient + diffuse + specular);
// finalValue = vec3(max(finalValue.x,0),max(finalValue.y,0),max(finalValue.z,0));
// return finalValue;
// }
float ShadowCalculation(vec4 fragPosLightSpace, vec3 lightDir, vec3 normal){
// perform perspective divide
vec3 projCoords = fragPosLightSpace.xyz / fragPosLightSpace.w;
//transform to NDC
projCoords = projCoords * 0.5 + 0.5;
//get closest depth from light's POV
float closestDepth = texture(shadowMap, projCoords.xy).r;
//get depth of current fragment
float currentDepth = projCoords.z;
//calculate bias
float bias = max(0.05 * (1.0 - dot(normal, lightDir)), 0.005);
//calculate shadow value
float shadow = currentDepth - bias > closestDepth ? 1.0 : 0.0;
if(projCoords.z > 1.0){
shadow = 0.0;
}
//calculate dot product, if it is >0 we know they're parallel-ish therefore should disregard the shadow mapping
//ie the fragment is already facing away from the light source
float dotprod = dot(normalize(lightDir),normalize(normal));
if(dotprod > 0.0){
shadow = 0.0;
}
// shadow = currentDepth;
return shadow;
}