305 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			GLSL
		
	
	
	
	
	
			
		
		
	
	
			305 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			GLSL
		
	
	
	
	
	
| #version 450 core
 | |
| 
 | |
| //foliage.fs
 | |
| 
 | |
| /**
 | |
| Bind points for different SSBOs
 | |
| */
 | |
| #define CLUSTER_SSBO_BIND_POINT 1
 | |
| #define POINT_LIGHT_SSBO_BIND_POINT 2
 | |
| #define DIRECT_LIGHT_SSBO_BIND_POINT 3
 | |
| 
 | |
| 
 | |
| /**
 | |
| Maximum number of point lights
 | |
| */
 | |
| #define MAX_POINT_LIGHTS 512
 | |
| 
 | |
| /**
 | |
| Maximum number of lights per cluster
 | |
| */
 | |
| #define MAX_LIGHTS_PER_CLUSTER 100
 | |
| 
 | |
| /**
 | |
| The direct global light
 | |
| */
 | |
| struct DirectLight {
 | |
|     vec3 direction;
 | |
|     vec3 color;
 | |
| };
 | |
| 
 | |
| /**
 | |
| A point light
 | |
| */
 | |
| struct PointLight {
 | |
|     vec4 position;
 | |
|     vec4 color;
 | |
|     float constant;
 | |
|     float linear;
 | |
|     float quadratic;
 | |
|     float radius;
 | |
| };
 | |
| 
 | |
| /**
 | |
| A light cluster
 | |
| */
 | |
| struct Cluster {
 | |
|     vec4 minPoint;
 | |
|     vec4 maxPoint;
 | |
|     uint count;
 | |
|     uint lightIndices[MAX_LIGHTS_PER_CLUSTER];
 | |
| };
 | |
| 
 | |
| layout (location = 0) out vec4 accum;
 | |
| layout (location = 1) out float reveal;
 | |
| 
 | |
| 
 | |
| layout(std430, binding = CLUSTER_SSBO_BIND_POINT) restrict buffer clusterGridSSBO {
 | |
|     Cluster clusters[];
 | |
| };
 | |
| 
 | |
| layout(std430, binding = POINT_LIGHT_SSBO_BIND_POINT) restrict buffer pointLightSSBO {
 | |
|     PointLight pointLight[];
 | |
| };
 | |
| 
 | |
| layout(std430, binding = DIRECT_LIGHT_SSBO_BIND_POINT) restrict buffer dirLightSSBO {
 | |
|     DirectLight directLight;
 | |
| };
 | |
| 
 | |
| struct Material {
 | |
|     sampler2D diffuse;
 | |
|     sampler2D specular;
 | |
|     float shininess;
 | |
| }; 
 | |
| 
 | |
| in vec3 FragPos;
 | |
| in vec3 ViewFragPos;
 | |
| in vec3 Normal;
 | |
| in vec2 TexCoord;
 | |
| in vec4 FragPosLightSpace;
 | |
| in vec4 instanceColor;
 | |
| 
 | |
| 
 | |
| uniform vec3 viewPos;
 | |
| // uniform DirLight dirLight;
 | |
| // uniform PointLight pointLights[NR_POINT_LIGHTS];
 | |
| // uniform SpotLight spotLight;
 | |
| uniform Material material;
 | |
| 
 | |
| //texture stuff
 | |
| // uniform sampler2D ourTexture;
 | |
| uniform int hasTransparency;
 | |
| // uniform sampler2D specularTexture;
 | |
| 
 | |
| //light depth map
 | |
| uniform sampler2D shadowMap;
 | |
| 
 | |
| /**
 | |
| Used for light cluster calculation
 | |
| */
 | |
| uniform float zNear;
 | |
| uniform float zFar;
 | |
| uniform uvec3 gridSize;
 | |
| uniform uvec2 screenDimensions;
 | |
| uniform mat4 view;
 | |
| 
 | |
| 
 | |
| // function prototypes
 | |
| uint findCluster(vec3 FragPos, float zNear, float zFar);
 | |
| vec3 CalcPointLight(PointLight pointLight, vec3 normal, vec3 fragPos, vec3 viewDir);
 | |
| float calcLightIntensityTotal(vec3 normal);
 | |
| float ShadowCalculation(vec4 fragPosLightSpace, vec3 lightDir, vec3 normal);
 | |
| float easeIn(float interpolator);
 | |
| float easeOut(float interpolator);
 | |
| 
 | |
| void main(){
 | |
|     vec3 viewDir = normalize(viewPos - FragPos);
 | |
|     
 | |
|     //grab light intensity
 | |
|     vec3 lightIntensity = vec3(calcLightIntensityTotal(Normal));
 | |
| 
 | |
|     //get color of base texture
 | |
|     // vec3 textureColor = vec3((norm.x + 1) / 2.0, norm.y, 1.0 - (norm.x + 1) / 2.0);
 | |
|     vec4 textureColor =  texture(material.diffuse,TexCoord) * instanceColor;
 | |
|     // vec3 textureColor = vec3(0.17647,0.4,0.09411);//texture(material.diffuse, TexCoord).rgb;
 | |
| 
 | |
|     //shadow
 | |
|     float shadow = ShadowCalculation(FragPosLightSpace, normalize(-directLight.direction), Normal);
 | |
| 
 | |
|     //
 | |
|     //point light calculations
 | |
|     uint clusterIndex = findCluster(ViewFragPos, zNear, zFar);
 | |
|     uint pointLightCount = clusters[clusterIndex].count;
 | |
|     for(int i = 0; i < pointLightCount; i++){
 | |
|         uint pointLightIndex = clusters[clusterIndex].lightIndices[i];
 | |
|         PointLight pointLight = pointLight[pointLightIndex];
 | |
|         lightIntensity = lightIntensity + CalcPointLight(pointLight, Normal, FragPos, viewDir);
 | |
|     }
 | |
|     //error checking on light clusters
 | |
|     if(pointLightCount > MAX_LIGHTS_PER_CLUSTER){
 | |
|         accum = vec4(1.0f,0.0f,0.0f,1);
 | |
|         reveal = textureColor.a;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     //calculate final color
 | |
|     vec4 finalColor = textureColor.rgba * vec4(lightIntensity,1.0);// * max(shadow,0.4);
 | |
|     // vec3 lightAmount = CalcDirLight(norm, viewDir);
 | |
|     // for(int i = 0; i < NR_POINT_LIGHTS; i++){
 | |
|     //    lightAmount += CalcPointLight(i, norm, FragPos, viewDir);
 | |
|     // }
 | |
| 
 | |
|     //calculate weight function
 | |
|     float weight = clamp(pow(min(1.0, finalColor.a * 10.0) + 0.01, 3.0) * 1e3 * 
 | |
|                         pow(1.0 - gl_FragCoord.z * 0.9, 3.0), 1e-2, 3e3);
 | |
| 
 | |
|     //emit colors
 | |
|     accum = vec4(finalColor.rgb * finalColor.a, finalColor.a) * weight;
 | |
|     // accum = finalColor * weight;
 | |
|     reveal = finalColor.a;
 | |
| }
 | |
| 
 | |
| // calculates the color when using a directional light.
 | |
| // vec3 CalcDirLight(vec3 normal, vec3 viewDir){
 | |
| //     vec3 lightDir = normalize(-dLDirection);
 | |
| //     // diffuse shading
 | |
| //     float diff = max(dot(normal, lightDir), 0.0);
 | |
| //     // specular shading
 | |
| //     // vec3 reflectDir = reflect(-lightDir, normal);
 | |
| //     // float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
 | |
| //     // combine results
 | |
| //     vec3 texColor = texture(material.diffuse, TexCoord).rgb;
 | |
| //     vec3 diffuse = dLDiffuse * diff;
 | |
| //     //vec3 specular = light.specular * spec * vec3(texture(material.specular, TexCoord).rgb);
 | |
| 
 | |
| 
 | |
| //     float shadow = ShadowCalculation(FragPosLightSpace, lightDir, normal);
 | |
| 
 | |
| //     return (  dLAmbient + (1.0-shadow) * diffuse  ) * texColor;// + specular);
 | |
| // }
 | |
| 
 | |
| //
 | |
| float calcLightIntensityAmbient(){
 | |
|     //calculate average of ambient light
 | |
|     float avg = (directLight.color.x + directLight.color.y + directLight.color.z)/3.0;
 | |
|     return avg;
 | |
| }
 | |
| 
 | |
| //
 | |
| float calcLightIntensityDir(vec3 normal){
 | |
|     vec3 lightDir = normalize(-directLight.direction);
 | |
|     // diffuse shading
 | |
|     float diff = max(dot(normal, lightDir), 0.0);
 | |
|     
 | |
|     return diff;
 | |
| }
 | |
| 
 | |
| //
 | |
| float calcLightIntensityTotal(vec3 normal){
 | |
|     //ambient intensity
 | |
|     float ambientLightIntensity = calcLightIntensityAmbient();
 | |
| 
 | |
|     //get direct intensity
 | |
|     float directLightIntensity = calcLightIntensityDir(normal);
 | |
| 
 | |
|     //sum
 | |
|     float total = ambientLightIntensity + directLightIntensity;
 | |
|     return total;
 | |
| }
 | |
| 
 | |
| //
 | |
| vec3 getTotalLightColor(vec3 normal){
 | |
|     //get the direct light color adjusted for intensity
 | |
|     vec3 diffuseLightColor = directLight.color * calcLightIntensityDir(normal);
 | |
| 
 | |
|     //sum light colors
 | |
|     vec3 totalLightColor = diffuseLightColor;
 | |
|     return totalLightColor;
 | |
| }
 | |
| 
 | |
| vec3 CalcPointLight(PointLight pointLight, vec3 normal, vec3 fragPos, vec3 viewDir){
 | |
|     vec3 lightDir = normalize(pointLight.position.xyz - fragPos);
 | |
|     // diffuse shading
 | |
|     float diff = max(dot(normal, lightDir), 0.0);
 | |
|     // specular shading
 | |
|     // vec3 reflectDir = reflect(-lightDir, normal);
 | |
|     // float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
 | |
|     // attenuation
 | |
|     float distance = length(pointLight.position.xyz - fragPos);
 | |
|     float attenuation = 1.0 / (pointLight.constant + pointLight.linear * distance + pointLight.quadratic * (distance * distance));
 | |
|     if(distance > pointLight.radius){
 | |
|         attenuation = 0;
 | |
|     }
 | |
|     // combine results
 | |
|     vec3 ambient = pointLight.color.xyz;// * vec4(texture(material.diffuse, TexCoord)).xyz;
 | |
|     vec3 diffuse = pointLight.color.xyz * diff;// * vec4(texture(material.diffuse, TexCoord)).xyz;
 | |
|     // vec3 specular = pLspecular[i] * spec;// * vec4(texture(material.specular, TexCoord)).xyz;
 | |
|     ambient = ambient * attenuation;
 | |
|     diffuse = diffuse * attenuation;
 | |
|     // specular *= attenuation;
 | |
|     vec3 specular = vec3(0,0,0);
 | |
| 
 | |
|     vec3 finalValue = vec3(0);
 | |
|     if(distance < pointLight.radius){
 | |
|         finalValue = (ambient + diffuse + specular);
 | |
|         finalValue = vec3(max(finalValue.x,0),max(finalValue.y,0),max(finalValue.z,0));
 | |
|     }
 | |
| 
 | |
|     return finalValue;
 | |
| }
 | |
| 
 | |
| /**
 | |
| Finds the light cluster this fragment belongs to
 | |
| */
 | |
| uint findCluster(vec3 viewspaceFragPos, float zNear, float zFar){
 | |
|     uint zTile = uint((log(abs(viewspaceFragPos.z) / zNear) * gridSize.z) / log(zFar / zNear));
 | |
|     vec2 tileSize = screenDimensions / gridSize.xy;
 | |
|     uvec3 tile = uvec3(gl_FragCoord.xy / tileSize, zTile);
 | |
|     return tile.x + (tile.y * gridSize.x) + (tile.z * gridSize.x * gridSize.y);
 | |
| }
 | |
| 
 | |
| float ShadowCalculation(vec4 fragPosLightSpace, vec3 lightDir, vec3 normal){
 | |
| 
 | |
|     // perform perspective divide
 | |
|     vec3 projCoords = fragPosLightSpace.xyz / fragPosLightSpace.w;
 | |
| 
 | |
|     //transform to NDC
 | |
|     projCoords = projCoords * 0.5 + 0.5;
 | |
| 
 | |
|     //get closest depth from light's POV
 | |
|     float closestDepth = texture(shadowMap, projCoords.xy).r;
 | |
| 
 | |
|     //get depth of current fragment
 | |
|     float currentDepth = projCoords.z;
 | |
|     
 | |
|     //calculate bias
 | |
|     float bias = max(0.05 * (1.0 - dot(normal, lightDir)), 0.005);
 | |
| 
 | |
|     //calculate shadow value
 | |
|     float shadow = currentDepth - bias > closestDepth  ? 1.0 : 0.0;
 | |
| 
 | |
|     if(projCoords.z > 1.0){
 | |
|         shadow = 0.0;
 | |
|     }
 | |
| 
 | |
|     //calculate dot product, if it is >0 we know they're parallel-ish therefore should disregard the shadow mapping
 | |
|     //ie the fragment is already facing away from the light source
 | |
|     float dotprod = dot(normalize(lightDir),normalize(normal));
 | |
| 
 | |
|     if(dotprod > 0.0){
 | |
|         shadow = 0.0;
 | |
|     }
 | |
| 
 | |
|     // shadow = currentDepth;
 | |
| 
 | |
|     return shadow;
 | |
| }
 | |
| 
 | |
| 
 | |
| float easeIn(float interpolator){
 | |
|     return interpolator * interpolator;
 | |
| }
 | |
| 
 | |
| float easeOut(float interpolator){
 | |
|     return 1 - easeIn(1 - interpolator);
 | |
| } |