Some checks failed
		
		
	
	studiorailgun/Renderer/pipeline/head There was a failure building this commit
				
			
		
			
				
	
	
		
			354 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			GLSL
		
	
	
	
	
	
			
		
		
	
	
			354 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			GLSL
		
	
	
	
	
	
#version 450 core
 | 
						|
 | 
						|
//texture defines
 | 
						|
#define ATLAS_ELEMENT_DIM 256.0
 | 
						|
#define ATLAS_DIM 8192.0
 | 
						|
#define ATLAS_EL_PER_ROW 32
 | 
						|
#define ATLAS_NORMALIZED_ELEMENT_WIDTH 0.031 //within the single texture within the atlas, we use this so we never go over the end of the texture
 | 
						|
#define ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL 0.03125 //used to properly shift from texture to texture in the atlas
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
Bind points for different SSBOs
 | 
						|
*/
 | 
						|
#define CLUSTER_SSBO_BIND_POINT 1
 | 
						|
#define POINT_LIGHT_SSBO_BIND_POINT 2
 | 
						|
#define DIRECT_LIGHT_SSBO_BIND_POINT 3
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
Maximum number of point lights
 | 
						|
*/
 | 
						|
#define MAX_POINT_LIGHTS 512
 | 
						|
 | 
						|
/**
 | 
						|
Maximum number of lights per cluster
 | 
						|
*/
 | 
						|
#define MAX_LIGHTS_PER_CLUSTER 100
 | 
						|
 | 
						|
/**
 | 
						|
The direct global light
 | 
						|
*/
 | 
						|
struct DirectLight {
 | 
						|
    vec3 direction;
 | 
						|
    vec3 color;
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
A point light
 | 
						|
*/
 | 
						|
struct PointLight {
 | 
						|
    vec4 position;
 | 
						|
    vec4 color;
 | 
						|
    float constant;
 | 
						|
    float linear;
 | 
						|
    float quadratic;
 | 
						|
    float radius;
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
A light cluster
 | 
						|
*/
 | 
						|
struct Cluster {
 | 
						|
    vec4 minPoint;
 | 
						|
    vec4 maxPoint;
 | 
						|
    uint count;
 | 
						|
    uint lightIndices[MAX_LIGHTS_PER_CLUSTER];
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
out vec4 FragColor;
 | 
						|
 | 
						|
layout(std430, binding = CLUSTER_SSBO_BIND_POINT) restrict buffer clusterGridSSBO {
 | 
						|
    Cluster clusters[];
 | 
						|
};
 | 
						|
 | 
						|
layout(std430, binding = POINT_LIGHT_SSBO_BIND_POINT) restrict buffer pointLightSSBO {
 | 
						|
    PointLight pointLight[];
 | 
						|
};
 | 
						|
 | 
						|
layout(std430, binding = DIRECT_LIGHT_SSBO_BIND_POINT) restrict buffer dirLightSSBO {
 | 
						|
    DirectLight directLight;
 | 
						|
};
 | 
						|
 | 
						|
struct Material {
 | 
						|
    sampler2D diffuse;
 | 
						|
    sampler2D specular;
 | 
						|
    float shininess;
 | 
						|
}; 
 | 
						|
 | 
						|
in vec3 FragPos;
 | 
						|
in vec3 ViewFragPos;
 | 
						|
in vec3 Normal;
 | 
						|
in vec2 texPlane1;
 | 
						|
in vec2 texPlane2;
 | 
						|
in vec2 texPlane3;
 | 
						|
in vec4 FragPosLightSpace;
 | 
						|
in vec3 samplerIndexVec; //the indices in the atlas of textures to sample
 | 
						|
in vec3 samplerRatioVec; //the vector of HOW MUCH to pull from each texture in the atlas
 | 
						|
 | 
						|
 | 
						|
uniform vec3 viewPos;
 | 
						|
// uniform DirLight dirLight;
 | 
						|
// uniform PointLight pointLights[NR_POINT_LIGHTS];
 | 
						|
// uniform SpotLight spotLight;
 | 
						|
uniform Material material;
 | 
						|
 | 
						|
//texture stuff
 | 
						|
// uniform sampler2D ourTexture;
 | 
						|
uniform int hasTransparency;
 | 
						|
// uniform sampler2D specularTexture;
 | 
						|
 | 
						|
//light depth map
 | 
						|
uniform sampler2D shadowMap;
 | 
						|
 | 
						|
/**
 | 
						|
Used for light cluster calculation
 | 
						|
*/
 | 
						|
uniform float zNear;
 | 
						|
uniform float zFar;
 | 
						|
uniform uvec3 gridSize;
 | 
						|
uniform uvec2 screenDimensions;
 | 
						|
uniform mat4 view;
 | 
						|
 | 
						|
 | 
						|
// function prototypes
 | 
						|
uint findCluster(vec3 FragPos, float zNear, float zFar);
 | 
						|
vec3 CalcPointLight(PointLight pointLight, vec3 normal, vec3 fragPos, vec3 viewDir);
 | 
						|
float calcLightIntensityTotal(vec3 normal);
 | 
						|
float ShadowCalculation(vec4 fragPosLightSpace, vec3 lightDir, vec3 normal);
 | 
						|
vec3 getColor(vec2 texPlane1, vec2 texPlane2, vec2 texPlane3, vec3 normal, vec3 samplerIndexVec, vec3 samplerRatioVec, Material material);
 | 
						|
 | 
						|
void main(){
 | 
						|
    vec3 norm = normalize(Normal);
 | 
						|
    vec3 viewDir = normalize(viewPos - FragPos);
 | 
						|
    
 | 
						|
    //grab light intensity
 | 
						|
    vec3 lightIntensity = vec3(calcLightIntensityTotal(norm));
 | 
						|
 | 
						|
    //get color of base texture
 | 
						|
    vec3 textureColor = getColor(texPlane1, texPlane2, texPlane3, norm, samplerIndexVec, samplerRatioVec, material);
 | 
						|
 | 
						|
    //shadow
 | 
						|
    float shadow = ShadowCalculation(FragPosLightSpace, normalize(-directLight.direction), -norm);
 | 
						|
 | 
						|
    //
 | 
						|
    //point light calculations
 | 
						|
    uint clusterIndex = findCluster(ViewFragPos, zNear, zFar);
 | 
						|
    uint pointLightCount = clusters[clusterIndex].count;
 | 
						|
    for(int i = 0; i < pointLightCount; i++){
 | 
						|
        uint pointLightIndex = clusters[clusterIndex].lightIndices[i];
 | 
						|
        PointLight pointLight = pointLight[pointLightIndex];
 | 
						|
        lightIntensity = lightIntensity + CalcPointLight(pointLight, norm, FragPos, viewDir);
 | 
						|
    }
 | 
						|
    //error checking on light clusters
 | 
						|
    if(pointLightCount > MAX_LIGHTS_PER_CLUSTER){
 | 
						|
        FragColor = vec4(1.0f,0.0f,0.0f,1);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    //calculate final color
 | 
						|
    vec3 finalColor = textureColor * lightIntensity * max(shadow,0.4);
 | 
						|
 | 
						|
    //this final calculation is for transparency
 | 
						|
    FragColor = vec4(finalColor, 1);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * The function that gets the texture color based on the triplanar texture mapping and the voxel type at each point along the vert.
 | 
						|
 * See the triplanar mapping wiki article for an explanation of math involved.
 | 
						|
 */
 | 
						|
vec3 getColor(vec2 texPlane1, vec2 texPlane2, vec2 texPlane3, vec3 normal, vec3 samplerIndexVec, vec3 samplerRatioVec, Material material){
 | 
						|
 | 
						|
    vec3 weights = abs(normal);
 | 
						|
 | 
						|
    //what is the index in the atlas of the texture for a given vertex
 | 
						|
    int vert1AtlasIndex = int(samplerIndexVec.x);
 | 
						|
    int vert2AtlasIndex = int(samplerIndexVec.y);
 | 
						|
    int vert3AtlasIndex = int(samplerIndexVec.z);
 | 
						|
 | 
						|
    //what is the weight of that texture relative to the fragment
 | 
						|
    float vert1Weight = samplerRatioVec.x;
 | 
						|
    float vert2Weight = samplerRatioVec.y;
 | 
						|
    float vert3Weight = samplerRatioVec.z;
 | 
						|
 | 
						|
    //the x-wise uv of the texture for vert1
 | 
						|
    vec2 vert1_x_uv = vec2(
 | 
						|
        (fract(texPlane1.x) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (mod(samplerIndexVec.x,ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL),
 | 
						|
        (fract(texPlane1.y) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (round(samplerIndexVec.x / ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL)
 | 
						|
    );
 | 
						|
    //the x-wise uv of the texture for vert2
 | 
						|
    vec2 vert2_x_uv = vec2(
 | 
						|
        (fract(texPlane1.x) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (mod(samplerIndexVec.y,ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL),
 | 
						|
        (fract(texPlane1.y) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (round(samplerIndexVec.y / ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL)
 | 
						|
    );
 | 
						|
    //the x-wise uv of the texture for vert3
 | 
						|
    vec2 vert3_x_uv = vec2(
 | 
						|
        (fract(texPlane1.x) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (mod(samplerIndexVec.z,ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL),
 | 
						|
        (fract(texPlane1.y) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (round(samplerIndexVec.z / ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL)
 | 
						|
    );
 | 
						|
    //albedo for the X texture
 | 
						|
    vec3 albedoX = texture(material.diffuse, vert1_x_uv).rgb * vert1Weight + texture(material.diffuse, vert2_x_uv).rgb * vert2Weight + texture(material.diffuse, vert3_x_uv).rgb * vert3Weight;
 | 
						|
 | 
						|
 | 
						|
    //the y-wise uv of the texture for vert1
 | 
						|
    vec2 vert1_y_uv = vec2(
 | 
						|
        (fract(texPlane2.x) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (mod(samplerIndexVec.x,ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL),
 | 
						|
        (fract(texPlane2.y) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (round(samplerIndexVec.x / ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL)
 | 
						|
    );
 | 
						|
    //the y-wise uv of the texture for vert2
 | 
						|
    vec2 vert2_y_uv = vec2(
 | 
						|
        (fract(texPlane2.x) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (mod(samplerIndexVec.y,ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL),
 | 
						|
        (fract(texPlane2.y) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (round(samplerIndexVec.y / ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL)
 | 
						|
    );
 | 
						|
    //the y-wise uv of the texture for vert3
 | 
						|
    vec2 vert3_y_uv = vec2(
 | 
						|
        (fract(texPlane2.x) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (mod(samplerIndexVec.z,ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL),
 | 
						|
        (fract(texPlane2.y) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (round(samplerIndexVec.z / ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL)
 | 
						|
    );
 | 
						|
    //albedo for the X texture
 | 
						|
    vec3 albedoY = texture(material.diffuse, vert1_y_uv).rgb * vert1Weight + texture(material.diffuse, vert2_y_uv).rgb * vert2Weight + texture(material.diffuse, vert3_y_uv).rgb * vert3Weight;
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
    //the z-wise uv of the texture for vert1
 | 
						|
    vec2 vert1_z_uv = vec2(
 | 
						|
        (fract(texPlane3.x) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (mod(samplerIndexVec.x,ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL),
 | 
						|
        (fract(texPlane3.y) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (round(samplerIndexVec.x / ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL)
 | 
						|
    );
 | 
						|
    //the z-wise uv of the texture for vert2
 | 
						|
    vec2 vert2_z_uv = vec2(
 | 
						|
        (fract(texPlane3.x) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (mod(samplerIndexVec.y,ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL),
 | 
						|
        (fract(texPlane3.y) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (round(samplerIndexVec.y / ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL)
 | 
						|
    );
 | 
						|
    //the z-wise uv of the texture for vert3
 | 
						|
    vec2 vert3_z_uv = vec2(
 | 
						|
        (fract(texPlane3.x) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (mod(samplerIndexVec.z,ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL),
 | 
						|
        (fract(texPlane3.y) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (round(samplerIndexVec.z / ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL)
 | 
						|
    );
 | 
						|
    //albedo for the X texture
 | 
						|
    vec3 albedoZ = texture(material.diffuse, vert1_z_uv).rgb * vert1Weight + texture(material.diffuse, vert2_z_uv).rgb * vert2Weight + texture(material.diffuse, vert3_z_uv).rgb * vert3Weight;
 | 
						|
    
 | 
						|
 | 
						|
    return (albedoX * weights.x + albedoY * weights.y + albedoZ * weights.z);
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
float calcLightIntensityAmbient(){
 | 
						|
    //calculate average of ambient light
 | 
						|
    float avg = (directLight.color.x + directLight.color.y + directLight.color.z)/3.0;
 | 
						|
    return avg;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
float calcLightIntensityDir(vec3 normal){
 | 
						|
    vec3 lightDir = normalize(-directLight.direction);
 | 
						|
    // diffuse shading
 | 
						|
    float diff = max(dot(normal, lightDir), 0.0);
 | 
						|
    
 | 
						|
    return diff;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
float calcLightIntensityTotal(vec3 normal){
 | 
						|
    //ambient intensity
 | 
						|
    float ambientLightIntensity = calcLightIntensityAmbient();
 | 
						|
 | 
						|
    //get direct intensity
 | 
						|
    float directLightIntensity = calcLightIntensityDir(normal);
 | 
						|
 | 
						|
    //sum
 | 
						|
    float total = ambientLightIntensity + directLightIntensity;
 | 
						|
    return total;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
vec3 getTotalLightColor(vec3 normal){
 | 
						|
    //get the direct light color adjusted for intensity
 | 
						|
    vec3 diffuseLightColor = directLight.color * calcLightIntensityDir(normal);
 | 
						|
 | 
						|
    //sum light colors
 | 
						|
    vec3 totalLightColor = diffuseLightColor;
 | 
						|
    return totalLightColor;
 | 
						|
}
 | 
						|
 | 
						|
vec3 CalcPointLight(PointLight pointLight, vec3 normal, vec3 fragPos, vec3 viewDir){
 | 
						|
    vec3 lightDir = normalize(pointLight.position.xyz - fragPos);
 | 
						|
    // diffuse shading
 | 
						|
    float diff = max(dot(normal, lightDir), 0.0);
 | 
						|
    // specular shading
 | 
						|
    // vec3 reflectDir = reflect(-lightDir, normal);
 | 
						|
    // float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
 | 
						|
    // attenuation
 | 
						|
    float distance = length(pointLight.position.xyz - fragPos);
 | 
						|
    float attenuation = 1.0 / (pointLight.constant + pointLight.linear * distance + pointLight.quadratic * (distance * distance));
 | 
						|
    if(distance > pointLight.radius){
 | 
						|
        attenuation = 0;
 | 
						|
    }
 | 
						|
    // combine results
 | 
						|
    vec3 ambient = pointLight.color.xyz;// * vec4(texture(material.diffuse, TexCoord)).xyz;
 | 
						|
    vec3 diffuse = pointLight.color.xyz * diff;// * vec4(texture(material.diffuse, TexCoord)).xyz;
 | 
						|
    // vec3 specular = pLspecular[i] * spec;// * vec4(texture(material.specular, TexCoord)).xyz;
 | 
						|
    ambient = ambient * attenuation;
 | 
						|
    diffuse = diffuse * attenuation;
 | 
						|
    // specular *= attenuation;
 | 
						|
    vec3 specular = vec3(0,0,0);
 | 
						|
 | 
						|
    vec3 finalValue = vec3(0);
 | 
						|
    if(distance < pointLight.radius){
 | 
						|
        finalValue = (ambient + diffuse + specular);
 | 
						|
        finalValue = vec3(max(finalValue.x,0),max(finalValue.y,0),max(finalValue.z,0));
 | 
						|
    }
 | 
						|
 | 
						|
    return finalValue;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
Finds the light cluster this fragment belongs to
 | 
						|
*/
 | 
						|
uint findCluster(vec3 viewspaceFragPos, float zNear, float zFar){
 | 
						|
    uint zTile = uint((log(abs(viewspaceFragPos.z) / zNear) * gridSize.z) / log(zFar / zNear));
 | 
						|
    vec2 tileSize = screenDimensions / gridSize.xy;
 | 
						|
    uvec3 tile = uvec3(gl_FragCoord.xy / tileSize, zTile);
 | 
						|
    return tile.x + (tile.y * gridSize.x) + (tile.z * gridSize.x * gridSize.y);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
float ShadowCalculation(vec4 fragPosLightSpace, vec3 lightDir, vec3 normal){
 | 
						|
 | 
						|
    // perform perspective divide
 | 
						|
    vec3 projCoords = fragPosLightSpace.xyz / fragPosLightSpace.w;
 | 
						|
 | 
						|
    //transform to NDC
 | 
						|
    projCoords = projCoords * 0.5 + 0.5;
 | 
						|
 | 
						|
    //get closest depth from light's POV
 | 
						|
    float closestDepth = texture(shadowMap, projCoords.xy).r;
 | 
						|
 | 
						|
    //get depth of current fragment
 | 
						|
    float currentDepth = projCoords.z;
 | 
						|
    
 | 
						|
    //calculate bias
 | 
						|
    float bias = max(0.05 * (1.0 - dot(normal, lightDir)), 0.005);
 | 
						|
 | 
						|
    //calculate shadow value
 | 
						|
    float shadow = currentDepth - bias > closestDepth  ? 1.0 : 0.0;
 | 
						|
 | 
						|
    if(projCoords.z > 1.0){
 | 
						|
        shadow = 0.0;
 | 
						|
    }
 | 
						|
 | 
						|
    //calculate dot product, if it is >0 we know they're parallel-ish therefore should disregard the shadow mapping
 | 
						|
    //ie the fragment is already facing away from the light source
 | 
						|
    float dotprod = dot(normalize(lightDir),normalize(normal));
 | 
						|
 | 
						|
    if(dotprod > 0.0){
 | 
						|
        shadow = 0.0;
 | 
						|
    }
 | 
						|
 | 
						|
    // shadow = currentDepth;
 | 
						|
 | 
						|
    return clamp(1.0 - shadow, 0.0, 0.7);
 | 
						|
} |