Renderer/assets/Shaders/core/light/cluster.comp
austin dc52e375e3
Some checks failed
studiorailgun/Renderer/pipeline/head There was a failure building this commit
clustered lighting implementation
2024-09-19 11:29:04 -04:00

97 lines
3.3 KiB
Plaintext

#version 450 core
/**
Maximum number of lights per cluster
*/
#define MAX_LIGHTS_PER_CLUSTER 100
/**
Bind points for different SSBOs
*/
#define CLUSTER_SSBO_BIND_POINT 1
#define POINT_LIGHT_SSBO_BIND_POINT 2
#define DIRECT_LIGHT_SSBO_BIND_POINT 3
layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
struct Cluster {
vec4 minPoint;
vec4 maxPoint;
uint count;
uint lightIndices[MAX_LIGHTS_PER_CLUSTER];
};
layout(std430, binding = CLUSTER_SSBO_BIND_POINT) restrict buffer clusterSSBO {
Cluster clusters[];
};
uniform float zNear;
uniform float zFar;
uniform mat4 inverseProjection;
uniform uvec3 gridSize;
uniform uvec2 screenDimensions;
vec3 screenToView(vec2 screenCoord);
vec3 lineIntersectionWithZPlane(vec3 startPoint, vec3 endPoint, float zDistance);
/*
context: glViewport is referred to as the "screen"
clusters are built based on a 2d screen-space grid and depth slices.
Later when shading, it is easy to figure what cluster a fragment is in based on
gl_FragCoord.xy and the fragment's z depth from camera
*/
void main() {
uint tileIndex = gl_WorkGroupID.x + (gl_WorkGroupID.y * gridSize.x) +
(gl_WorkGroupID.z * gridSize.x * gridSize.y);
vec2 tileSize = screenDimensions / gridSize.xy;
// tile in screen-space
vec2 minTile_screenspace = gl_WorkGroupID.xy * tileSize;
vec2 maxTile_screenspace = (gl_WorkGroupID.xy + 1) * tileSize;
// convert tile to view space sitting on the near plane
vec3 minTile = screenToView(minTile_screenspace);
vec3 maxTile = screenToView(maxTile_screenspace);
float planeNear =
zNear * pow(zFar / zNear, gl_WorkGroupID.z / float(gridSize.z));
float planeFar =
zNear * pow(zFar / zNear, (gl_WorkGroupID.z + 1) / float(gridSize.z));
// the line goes from the eye position in view space (0, 0, 0)
// through the min/max points of a tile to intersect with a given cluster's near-far planes
vec3 minPointNear =
lineIntersectionWithZPlane(vec3(0, 0, 0), minTile, planeNear);
vec3 minPointFar =
lineIntersectionWithZPlane(vec3(0, 0, 0), minTile, planeFar);
vec3 maxPointNear =
lineIntersectionWithZPlane(vec3(0, 0, 0), maxTile, planeNear);
vec3 maxPointFar =
lineIntersectionWithZPlane(vec3(0, 0, 0), maxTile, planeFar);
clusters[tileIndex].minPoint = vec4(min(minPointNear, minPointFar), 0.0);
clusters[tileIndex].maxPoint = vec4(max(maxPointNear, maxPointFar), 0.0);
}
// Returns the intersection point of an infinite line and a
// plane perpendicular to the Z-axis
vec3 lineIntersectionWithZPlane(vec3 startPoint, vec3 endPoint, float zDistance) {
vec3 direction = endPoint - startPoint;
vec3 normal = vec3(0.0, 0.0, -1.0); // plane normal
// skip check if the line is parallel to the plane.
float t = (zDistance - dot(normal, startPoint)) / dot(normal, direction);
return startPoint + t * direction; // the parametric form of the line equation
}
vec3 screenToView(vec2 screenCoord) {
// normalize screenCoord to [-1, 1] and
// set the NDC depth of the coordinate to be on the near plane. This is -1 by
// default in OpenGL
vec4 ndc = vec4(screenCoord / screenDimensions * 2.0 - 1.0, -1.0, 1.0);
vec4 viewCoord = inverseProjection * ndc;
viewCoord /= viewCoord.w;
return viewCoord.xyz;
}