213 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			GLSL
		
	
	
	
	
	
			
		
		
	
	
			213 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			GLSL
		
	
	
	
	
	
| /*
 | |
| MIT License
 | |
| 
 | |
| Copyright (c) 2022 railgunSR
 | |
| 
 | |
| Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
| of this software and associated documentation files (the "Software"), to deal
 | |
| in the Software without restriction, including without limitation the rights
 | |
| to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
| copies of the Software, and to permit persons to whom the Software is
 | |
| furnished to do so, subject to the following conditions:
 | |
| 
 | |
| The above copyright notice and this permission notice shall be included in all
 | |
| copies or substantial portions of the Software.
 | |
| 
 | |
| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
| IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
| FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | |
| AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
| LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
| OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 | |
| SOFTWARE.
 | |
| */
 | |
| /*
 | |
| THIS MAKES USE OF OPENSIMPLEX2, A NOISE ALGORITHM CREATED BY THE FINE FOLKS 
 | |
| OVER AT https://github.com/KdotJPG/OpenSimplex2
 | |
| PLEASE GIVE THEM SOME LOVE.
 | |
| 
 | |
| THE FLAME FUNCTION IS ONE CREATED BY ME BLENDING A LOG2 INTO A EXPONENTIAL.
 | |
| */
 | |
| 
 | |
| #version 330 core
 | |
| 
 | |
| out vec4 fragColor;
 | |
| 
 | |
| uniform float time;
 | |
| 
 | |
| in vec3 FragPos;
 | |
| in vec3 Normal;
 | |
| in vec2 TexCoord;
 | |
| 
 | |
| vec4 openSimplex2_ImproveXY(vec3 X);
 | |
| float flameTex(float x, float y);
 | |
| 
 | |
| void main(){
 | |
|     
 | |
|     float timeS = time * 0.003;
 | |
|     
 | |
|     // Normalized pixel coordinates (from 0 to 1)
 | |
|     vec2 uv = vec2(TexCoord.x,1-TexCoord.y);
 | |
|     
 | |
|     // vec4 openVec = openSimplex2_ImproveXY(vec3(uv.x,uv.y,time));
 | |
|     vec4 openVec = openSimplex2_ImproveXY(vec3(uv.x*3.0,uv.y*3.0 - timeS,0.0));
 | |
| 
 | |
|     float nS = 3.0; //noise scale
 | |
| 
 | |
|     //compose textures
 | |
|     float flameXScale = 2.0;
 | |
|     float flameYScale = 2.0;
 | |
|     float flameVal = flameTex(uv.x*flameXScale-1.0/flameXScale,uv.y*flameYScale-1.0/flameYScale);
 | |
| 
 | |
|     float flameComp1 = flameVal * openSimplex2_ImproveXY(vec3(uv.x * nS              ,uv.y * nS - timeS * 1.0,0.0)).x;
 | |
|     nS = 3.0;
 | |
|     float flameComp2 = flameVal * openSimplex2_ImproveXY(vec3(uv.x * nS              ,uv.y * nS - timeS * 2.0,0.0)).x;
 | |
|     nS = 5.0;
 | |
|     float flameComp3 = flameVal * openSimplex2_ImproveXY(vec3(uv.x * nS + timeS * 1.0,uv.y * nS - timeS * 3.0,0.0)).x;
 | |
|     float flameComp4 = flameVal * openSimplex2_ImproveXY(vec3(uv.x * nS - timeS * 1.0,uv.y * nS - timeS * 3.0,0.0)).x;
 | |
|     nS = 3.0;
 | |
|     float flameComp5 = flameVal * openSimplex2_ImproveXY(vec3(uv.x * nS              ,uv.y * nS - timeS * 1.5,0.0)).x;
 | |
|     float val = 
 | |
|     flameVal * 3.0 +
 | |
|     flameComp1 * 0.2 +
 | |
|     flameComp2 * 0.2 +
 | |
|     flameComp3 * 0.2 +
 | |
|     flameComp4 * 0.2 +
 | |
|     flameComp5 * 0.2
 | |
|     ;
 | |
|     
 | |
|     vec4 color = vec4(
 | |
|         min(val*2.0,1.0),
 | |
|         min(val*0.8,1.0),
 | |
|         min(val*0.2,1.0),
 | |
|         min(val,1.0)
 | |
|         );
 | |
|     
 | |
|     if(val < 0.3){
 | |
|         discard;
 | |
|     }
 | |
| 
 | |
|     // Output to screen
 | |
|     fragColor = color;
 | |
| }
 | |
| 
 | |
| //
 | |
| //custom flame function
 | |
| ///
 | |
| 
 | |
| float flameTex(float x, float y){
 | |
|     //flip y
 | |
|     float t = 1.0 - y;
 | |
|     //calculate vertical component
 | |
|     float verticalFlameValue = pow(log(t+1.0),1.4) - step(0.5,t) * (pow((2.0 * (t - 0.5)),3.0) / pow(log(2.0),1.4));
 | |
|     //calculate dist along horizontal from vertical component
 | |
|     float dist = abs(x-0.5);
 | |
|     //want to fade to nothing at dist >= vertical flame value
 | |
|     //use exponent to get there
 | |
|     //clamp range with min
 | |
|     float v = max(2.0 * (verticalFlameValue - dist),0.0);
 | |
|     //apply exponent to get value
 | |
|     float rVal = pow(v,1.4);
 | |
|     return rVal;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //////////////// K.jpg's Re-oriented 4-Point BCC Noise (OpenSimplex2) ////////////////
 | |
| ////////////////////// Output: vec4(dF/dx, dF/dy, dF/dz, value) //////////////////////
 | |
| 
 | |
| // Inspired by Stefan Gustavson's noise
 | |
| vec4 permute(vec4 t) {
 | |
|     return t * (t * 34.0 + 133.0);
 | |
| }
 | |
| 
 | |
| // Gradient set is a normalized expanded rhombic dodecahedron
 | |
| vec3 grad(float hash) {
 | |
|     
 | |
|     // Random vertex of a cube, +/- 1 each
 | |
|     vec3 cube = mod(floor(hash / vec3(1.0, 2.0, 4.0)), 2.0) * 2.0 - 1.0;
 | |
|     
 | |
|     // Random edge of the three edges connected to that vertex
 | |
|     // Also a cuboctahedral vertex
 | |
|     // And corresponds to the face of its dual, the rhombic dodecahedron
 | |
|     vec3 cuboct = cube;
 | |
|     cuboct[int(hash / 16.0)] = 0.0;
 | |
|     
 | |
|     // In a funky way, pick one of the four points on the rhombic face
 | |
|     float type = mod(floor(hash / 8.0), 2.0);
 | |
|     vec3 rhomb = (1.0 - type) * cube + type * (cuboct + cross(cube, cuboct));
 | |
|     
 | |
|     // Expand it so that the new edges are the same length
 | |
|     // as the existing ones
 | |
|     vec3 grad = cuboct * 1.22474487139 + rhomb;
 | |
|     
 | |
|     // To make all gradients the same length, we only need to shorten the
 | |
|     // second type of vector. We also put in the whole noise scale constant.
 | |
|     // The compiler should reduce it into the existing floats. I think.
 | |
|     grad *= (1.0 - 0.042942436724648037 * type) * 32.80201376986577;
 | |
|     
 | |
|     return grad;
 | |
| }
 | |
| 
 | |
| // BCC lattice split up into 2 cube lattices
 | |
| vec4 openSimplex2Base(vec3 X) {
 | |
|     
 | |
|     // First half-lattice, closest edge
 | |
|     vec3 v1 = round(X);
 | |
|     vec3 d1 = X - v1;
 | |
|     vec3 score1 = abs(d1);
 | |
|     vec3 dir1 = step(max(score1.yzx, score1.zxy), score1);
 | |
|     vec3 v2 = v1 + dir1 * sign(d1);
 | |
|     vec3 d2 = X - v2;
 | |
|     
 | |
|     // Second half-lattice, closest edge
 | |
|     vec3 X2 = X + 144.5;
 | |
|     vec3 v3 = round(X2);
 | |
|     vec3 d3 = X2 - v3;
 | |
|     vec3 score2 = abs(d3);
 | |
|     vec3 dir2 = step(max(score2.yzx, score2.zxy), score2);
 | |
|     vec3 v4 = v3 + dir2 * sign(d3);
 | |
|     vec3 d4 = X2 - v4;
 | |
|     
 | |
|     // Gradient hashes for the four points, two from each half-lattice
 | |
|     vec4 hashes = permute(mod(vec4(v1.x, v2.x, v3.x, v4.x), 289.0));
 | |
|     hashes = permute(mod(hashes + vec4(v1.y, v2.y, v3.y, v4.y), 289.0));
 | |
|     hashes = mod(permute(mod(hashes + vec4(v1.z, v2.z, v3.z, v4.z), 289.0)), 48.0);
 | |
|     
 | |
|     // Gradient extrapolations & kernel function
 | |
|     vec4 a = max(0.5 - vec4(dot(d1, d1), dot(d2, d2), dot(d3, d3), dot(d4, d4)), 0.0);
 | |
|     vec4 aa = a * a; vec4 aaaa = aa * aa;
 | |
|     vec3 g1 = grad(hashes.x); vec3 g2 = grad(hashes.y);
 | |
|     vec3 g3 = grad(hashes.z); vec3 g4 = grad(hashes.w);
 | |
|     vec4 extrapolations = vec4(dot(d1, g1), dot(d2, g2), dot(d3, g3), dot(d4, g4));
 | |
|     
 | |
|     // Derivatives of the noise
 | |
|     vec3 derivative = -8.0 * mat4x3(d1, d2, d3, d4) * (aa * a * extrapolations)
 | |
|         + mat4x3(g1, g2, g3, g4) * aaaa;
 | |
|     
 | |
|     // Return it all as a vec4
 | |
|     return vec4(derivative, dot(aaaa, extrapolations));
 | |
| }
 | |
| 
 | |
| // Use this if you don't want Z to look different from X and Y
 | |
| vec4 openSimplex2_Conventional(vec3 X) {
 | |
|     
 | |
|     // Rotate around the main diagonal. Not a skew transform.
 | |
|     vec4 result = openSimplex2Base(dot(X, vec3(2.0/3.0)) - X);
 | |
|     return vec4(dot(result.xyz, vec3(2.0/3.0)) - result.xyz, result.w);
 | |
| }
 | |
| 
 | |
| // Use this if you want to show X and Y in a plane, then use Z for time, vertical, etc.
 | |
| vec4 openSimplex2_ImproveXY(vec3 X) {
 | |
|     
 | |
|     // Rotate so Z points down the main diagonal. Not a skew transform.
 | |
|     mat3 orthonormalMap = mat3(
 | |
|         0.788675134594813, -0.211324865405187, -0.577350269189626,
 | |
|         -0.211324865405187, 0.788675134594813, -0.577350269189626,
 | |
|         0.577350269189626, 0.577350269189626, 0.577350269189626);
 | |
|     
 | |
|     vec4 result = openSimplex2Base(orthonormalMap * X);
 | |
|     return vec4(result.xyz * orthonormalMap, result.w);
 | |
| }
 | |
| 
 | |
| //////////////////////////////// End noise code //////////////////////////////// |