Renderer/assets/Shaders/lib/lights.fs
2025-05-19 14:53:56 -04:00

381 lines
10 KiB
GLSL

//uncomment if working on this library file:
//#version 450 core
#extension GL_ARB_shading_language_include : require
#include "./material.fs"
/**
* Maximum number of point lights
*/
#define MAX_POINT_LIGHTS 512
/**
* Maximum number of lights per cluster
*/
#define MAX_LIGHTS_PER_CLUSTER 100
/**
* Bind points for different SSBOs
*/
#define CLUSTER_SSBO_BIND_POINT 1
#define POINT_LIGHT_SSBO_BIND_POINT 2
#define DIRECT_LIGHT_SSBO_BIND_POINT 3
/**
* The direct global light
*/
struct DirectLight {
vec4 direction;
vec4 color;
vec4 ambientColor;
};
/**
* A point light
*/
struct PointLight {
vec4 position;
vec4 color;
float constant;
float linear;
float quadratic;
float radius;
};
/**
* A light cluster
*/
struct Cluster {
vec4 minPoint;
vec4 maxPoint;
uint count;
uint lightIndices[MAX_LIGHTS_PER_CLUSTER];
};
/**
* Cutoff for fragment alpha
*/
#define FRAGMENT_ALPHA_CUTOFF 0.001
layout(std430, binding = CLUSTER_SSBO_BIND_POINT) restrict buffer clusterGridSSBO {
Cluster clusters[];
};
layout(std430, binding = POINT_LIGHT_SSBO_BIND_POINT) restrict buffer pointLightSSBO {
PointLight pointLight[];
};
layout(std430, binding = DIRECT_LIGHT_SSBO_BIND_POINT) restrict buffer dirLightSSBO {
DirectLight directLight;
};
/**
* The minimum multiplier that shadow can apply to the fragment (ie how dark can it make the fragment)
*/
#define SHADOW_MIN_MULTIPLIER 0.4f
/**
* Used for light cluster calculation
*/
uniform float zNear;
uniform float zFar;
uniform uvec3 gridSize;
uniform uvec2 screenDimensions;
/**
* The light depth map texture
*/
uniform sampler2D shadowMap;
/**
* Finds the light cluster for this fragment
*/
uint findCluster(vec3 viewspaceFragPos, float zNear, float zFar);
/**
* Calculates the point light's value applied to this fragment
*/
vec3 CalcPointLight(PointLight pointLight, vec3 normal, vec3 fragPos, vec3 viewDir);
/**
* calculates the total light intensity on this fragment
*/
float calcLightIntensityTotal(vec3 normal);
/**
* Calculates the shadow applied to this fragment
*/
float ShadowCalculation(vec4 fragPosLightSpace, vec3 lightDir, vec3 normal);
/**
* Gets the total light to apply to the fragment
*/
vec3 getTotalLight(Material mat, vec3 norm, vec3 viewDir);
/**
* Calculates the ambient light applied to this fragment
*/
float calcLightIntensityAmbient(){
//calculate average of ambient light
float avg = (directLight.color.x + directLight.color.y + directLight.color.z)/3.0;
return avg;
}
/**
* Calculates the ambient light
*/
vec3 calcAmbientLight(vec3 diffuseVal){
return directLight.ambientColor.rgb * diffuseVal;
}
//
/**
* Calculates the direct light applied to this fragment
*/
float calcLightIntensityDir(vec3 normal){
vec3 lightDir = normalize(-directLight.direction.xyz);
// diffuse shading
float diff = max(dot(normal, lightDir), 0.0);
return diff;
}
/**
* Calculates the direct light
*/
vec3 calcDiffuseLight(vec3 normal, vec3 diffuseVal){
vec3 lightDir = normalize(-directLight.direction.xyz);
float diff = max(dot(normal, lightDir), 0.0);
vec3 fullColor = directLight.color.rgb * (diff * diffuseVal);
vec3 colorClamp = vec3(max(fullColor.x,0),max(fullColor.y,0),max(fullColor.z,0));
return colorClamp;
}
/**
* Calculates the direct light applied to this fragment
*/
vec3 calcSpecLight(
vec3 viewPos,
vec3 fragPos,
vec3 norm,
float shininess,
vec3 specularVal
){
vec3 viewDir = normalize(viewPos - fragPos);
vec3 reflectDir = reflect(-directLight.direction.xyz, norm);
float spec = pow(max(dot(viewDir, reflectDir), 0.0), shininess);
vec3 specular = directLight.color.rgb * (spec * specularVal);
vec3 specClamp = vec3(max(specular.x,0),max(specular.y,0),max(specular.z,0));
return specClamp;
}
/**
* Calculates the total light intensity applied to this fragment
*/
float calcLightIntensityTotal(vec3 normal){
//ambient intensity
float ambientLightIntensity = calcLightIntensityAmbient();
//get direct intensity
float directLightIntensity = calcLightIntensityDir(normal);
//sum
float total = ambientLightIntensity + directLightIntensity;
return total;
}
//
vec3 getTotalLightColor(vec3 normal){
//get the direct light color adjusted for intensity
vec3 diffuseLightColor = directLight.color.rgb * calcLightIntensityDir(normal);
//sum light colors
vec3 totalLightColor = diffuseLightColor;
return totalLightColor;
}
/**
* Calculates the point light applied to this fragment
*/
vec3 CalcPointLight(PointLight pointLight, vec3 normal, vec3 fragPos, vec3 viewDir){
vec3 lightDir = normalize(pointLight.position.xyz - fragPos);
// diffuse shading
float diff = max(dot(normal, lightDir), 0.0);
// specular shading
// vec3 reflectDir = reflect(-lightDir, normal);
// float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
// attenuation
float distance = length(pointLight.position.xyz - fragPos);
float attenuation = 1.0 / (pointLight.constant + pointLight.linear * distance + pointLight.quadratic * (distance * distance));
if(distance > pointLight.radius){
attenuation = 0;
}
// combine results
vec3 ambient = pointLight.color.xyz;// * vec4(texture(material.diffuse, TexCoord)).xyz;
vec3 diffuse = pointLight.color.xyz * diff;// * vec4(texture(material.diffuse, TexCoord)).xyz;
// vec3 specular = pLspecular[i] * spec;// * vec4(texture(material.specular, TexCoord)).xyz;
ambient = ambient * attenuation;
diffuse = diffuse * attenuation;
// specular *= attenuation;
vec3 specular = vec3(0,0,0);
vec3 finalValue = vec3(0);
if(distance < pointLight.radius){
finalValue = (ambient + diffuse + specular);
finalValue = vec3(max(finalValue.x,0),max(finalValue.y,0),max(finalValue.z,0));
}
return finalValue;
}
/**
* Finds the light cluster this fragment belongs to
*/
uint findCluster(vec3 viewspaceFragPos, float zNear, float zFar){
uint zTile = uint((log(abs(viewspaceFragPos.z) / zNear) * gridSize.z) / log(zFar / zNear));
vec2 tileSize = screenDimensions / gridSize.xy;
uvec3 tile = uvec3(gl_FragCoord.xy / tileSize, zTile);
return tile.x + (tile.y * gridSize.x) + (tile.z * gridSize.x * gridSize.y);
}
/**
* Calculates the shadow applied to this fragment
*/
float ShadowCalculation(vec4 fragPosLightSpace, vec3 lightDir, vec3 normal){
// perform perspective divide
vec3 projCoords = fragPosLightSpace.xyz / fragPosLightSpace.w;
//transform to NDC
projCoords = projCoords * 0.5 + 0.5;
//get closest depth from light's POV
float closestDepth = texture(shadowMap, projCoords.xy).r;
//get depth of current fragment
float currentDepth = projCoords.z;
//calculate bias
float bias = max(0.05 * (1.0 - dot(normal, lightDir)), 0.005);
//calculate shadow value
float shadow = currentDepth - bias > closestDepth ? 1.0 : 0.0;
if(projCoords.z > 1.0){
shadow = 0.0;
}
//calculate dot product, if it is >0 we know they're parallel-ish therefore should disregard the shadow mapping
//ie the fragment is already facing away from the light source
float dotprod = dot(normalize(lightDir),normalize(normal));
if(dotprod > 0.0){
shadow = 0.0;
}
// shadow = currentDepth;
return clamp(1.0 - shadow, 0.0, 0.7);
}
/**
* Gets the total light to apply to the fragment
*/
vec3 getTotalLight(
Material mat,
vec2 texCoord,
vec3 viewPos,
vec4 fragPosLightSpace,
vec3 fragPosView,
vec3 fragPos,
vec3 norm,
vec3 viewDir
){
vec3 diffuseVal = texture(mat.diffuse, texCoord).rgb;
vec3 specularVal = vec3(0);
//
//Global light calculations
vec3 ambientLight = calcAmbientLight(diffuseVal);
vec3 diffuseLight = calcDiffuseLight(norm, diffuseVal);
vec3 specLight = calcSpecLight(viewPos,fragPos,norm,mat.shininess,specularVal);
vec3 lightSum = ambientLight + diffuseLight + specLight;
//
//point light calculations
uint clusterIndex = findCluster(fragPosView, zNear, zFar);
uint pointLightCount = clusters[clusterIndex].count;
for(int i = 0; i < pointLightCount; i++){
uint pointLightIndex = clusters[clusterIndex].lightIndices[i];
PointLight pointLight = pointLight[pointLightIndex];
lightSum = lightSum + CalcPointLight(pointLight, norm, fragPos, viewDir);
}
//error checking on light clusters
if(pointLightCount > MAX_LIGHTS_PER_CLUSTER){
return vec3(1.0,0.0,0.0);
}
//
//shadow calculations
float shadow = ShadowCalculation(fragPosLightSpace, normalize(-directLight.direction.xyz), -norm);
float shadowMultiplier = max(shadow,SHADOW_MIN_MULTIPLIER);
lightSum = lightSum * shadowMultiplier;
//clamp
vec3 lightClamp = vec3(min(lightSum.x,1),min(lightSum.y,1),min(lightSum.z,1));
return lightClamp;
}
/**
* Gets the total light to apply to the fragment
*/
vec3 getTotalLight(
Material mat,
vec3 albedo,
vec3 viewPos,
vec4 fragPosLightSpace,
vec3 fragPosView,
vec3 fragPos,
vec3 norm,
vec3 viewDir
){
vec3 diffuseVal = albedo;
vec3 specularVal = vec3(0);
//
//Global light calculations
vec3 ambientLight = calcAmbientLight(diffuseVal);
vec3 diffuseLight = calcDiffuseLight(norm, diffuseVal);
vec3 specLight = calcSpecLight(viewPos,fragPos,norm,mat.shininess,specularVal);
vec3 lightSum = ambientLight + diffuseLight + specLight;
//
//point light calculations
uint clusterIndex = findCluster(fragPosView, zNear, zFar);
uint pointLightCount = clusters[clusterIndex].count;
for(int i = 0; i < pointLightCount; i++){
uint pointLightIndex = clusters[clusterIndex].lightIndices[i];
PointLight pointLight = pointLight[pointLightIndex];
lightSum = lightSum + CalcPointLight(pointLight, norm, fragPos, viewDir);
}
//error checking on light clusters
if(pointLightCount > MAX_LIGHTS_PER_CLUSTER){
return vec3(1.0,0.0,0.0);
}
//
//shadow calculations
float shadow = ShadowCalculation(fragPosLightSpace, normalize(-directLight.direction.xyz), -norm);
float shadowMultiplier = max(shadow,SHADOW_MIN_MULTIPLIER);
lightSum = lightSum * shadowMultiplier;
//clamp
vec3 lightClamp = vec3(min(lightSum.x,1),min(lightSum.y,1),min(lightSum.z,1));
return lightClamp;
}