Renderer/assets/Shaders/FragmentShader.fs
austin 755db7ba72
Some checks failed
studiorailgun/Renderer/pipeline/head There was a failure building this commit
editor entity support
2024-11-13 18:55:02 -05:00

263 lines
7.1 KiB
GLSL

#version 450 core
//FragmentShader.fs
/**
Maximum number of point lights
*/
#define MAX_POINT_LIGHTS 512
/**
Maximum number of lights per cluster
*/
#define MAX_LIGHTS_PER_CLUSTER 100
/**
Bind points for different SSBOs
*/
#define CLUSTER_SSBO_BIND_POINT 1
#define POINT_LIGHT_SSBO_BIND_POINT 2
#define DIRECT_LIGHT_SSBO_BIND_POINT 3
/**
The direct global light
*/
struct DirectLight {
vec3 direction;
vec3 color;
};
/**
A point light
*/
struct PointLight {
vec4 position;
vec4 color;
float constant;
float linear;
float quadratic;
float radius;
};
/**
A light cluster
*/
struct Cluster {
vec4 minPoint;
vec4 maxPoint;
uint count;
uint lightIndices[MAX_LIGHTS_PER_CLUSTER];
};
out vec4 FragColor;
layout(std430, binding = CLUSTER_SSBO_BIND_POINT) restrict buffer clusterGridSSBO {
Cluster clusters[];
};
layout(std430, binding = POINT_LIGHT_SSBO_BIND_POINT) restrict buffer pointLightSSBO {
PointLight pointLight[];
};
layout(std430, binding = DIRECT_LIGHT_SSBO_BIND_POINT) restrict buffer dirLightSSBO {
DirectLight directLight;
};
struct Material {
sampler2D diffuse;
sampler2D specular;
float shininess;
};
in vec3 FragPos;
in vec3 ViewFragPos;
in vec3 Normal;
in vec2 TexCoord;
in vec4 FragPosLightSpace;
uniform vec3 viewPos;
// uniform DirLight dirLight;
// uniform PointLight pointLights[NR_POINT_LIGHTS];
// uniform SpotLight spotLight;
uniform Material material;
//texture stuff
// uniform sampler2D ourTexture;
uniform int hasTransparency;
// uniform sampler2D specularTexture;
//light depth map
uniform sampler2D shadowMap;
/**
Used for light cluster calculation
*/
uniform float zNear;
uniform float zFar;
uniform uvec3 gridSize;
uniform uvec2 screenDimensions;
// function prototypes
uint findCluster(vec3 viewspaceFragPos, float zNear, float zFar);
vec3 CalcPointLight(PointLight pointLight, vec3 normal, vec3 fragPos, vec3 viewDir);
float calcLightIntensityTotal(vec3 normal);
float ShadowCalculation(vec4 fragPosLightSpace, vec3 lightDir, vec3 normal);
void main(){
if(texture(material.diffuse, TexCoord).a < 0.01){
discard;
}
vec3 norm = normalize(Normal);
vec3 viewDir = normalize(viewPos - FragPos);
//grab light intensity
vec3 lightIntensity = vec3(calcLightIntensityTotal(norm));
//get color of base texture
vec3 textureColor = texture(material.diffuse, TexCoord).rgb;
//shadow
float shadow = ShadowCalculation(FragPosLightSpace, normalize(-directLight.direction), -norm);
//
//point light calculations
vec3 lightAmount = vec3(0);
uint clusterIndex = findCluster(ViewFragPos, zNear, zFar);
uint pointLightCount = clusters[clusterIndex].count;
for(int i = 0; i < pointLightCount; i++){
uint pointLightIndex = clusters[clusterIndex].lightIndices[i];
PointLight pointLight = pointLight[pointLightIndex];
lightIntensity = lightIntensity + CalcPointLight(pointLight, norm, FragPos, viewDir);
}
//error checking on light clusters
if(pointLightCount > MAX_LIGHTS_PER_CLUSTER){
FragColor = vec4(1.0f,0,0,1.0f);
return;
}
//calculate final color
vec3 finalColor = textureColor * lightIntensity * max(shadow,0.4);
//this final calculation is for transparency
FragColor = vec4(finalColor, texture(material.diffuse, TexCoord).a);//texture(ourTexture, TexCoord);//vec4(result, 1.0);
}
//
float calcLightIntensityAmbient(){
//calculate average of ambient light
float avg = (directLight.color.x + directLight.color.y + directLight.color.z)/3.0;
return avg;
}
//
float calcLightIntensityDir(vec3 normal){
vec3 lightDir = normalize(-directLight.direction);
// diffuse shading
float diff = max(dot(normal, lightDir), 0.0);
return diff;
}
//
float calcLightIntensityTotal(vec3 normal){
//ambient intensity
float ambientLightIntensity = calcLightIntensityAmbient();
//get direct intensity
float directLightIntensity = calcLightIntensityDir(normal);
//sum
float total = ambientLightIntensity + directLightIntensity;
return total;
}
//
vec3 getTotalLightColor(vec3 normal){
//get the direct light color adjusted for intensity
vec3 diffuseLightColor = directLight.color * calcLightIntensityDir(normal);
//sum light colors
vec3 totalLightColor = diffuseLightColor;
return totalLightColor;
}
vec3 CalcPointLight(PointLight pointLight, vec3 normal, vec3 fragPos, vec3 viewDir){
vec3 lightDir = normalize(pointLight.position.xyz - fragPos);
// diffuse shading
float diff = max(dot(normal, lightDir), 0.0);
// specular shading
// vec3 reflectDir = reflect(-lightDir, normal);
// float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
// attenuation
float distance = length(pointLight.position.xyz - fragPos);
float attenuation = 1.0 / (pointLight.constant + pointLight.linear * distance + pointLight.quadratic * (distance * distance));
if(distance > pointLight.radius){
attenuation = 0;
}
// combine results
vec3 ambient = pointLight.color.xyz;// * vec4(texture(material.diffuse, TexCoord)).xyz;
vec3 diffuse = pointLight.color.xyz * diff;// * vec4(texture(material.diffuse, TexCoord)).xyz;
// vec3 specular = pLspecular[i] * spec;// * vec4(texture(material.specular, TexCoord)).xyz;
ambient = ambient * attenuation;
diffuse = diffuse * attenuation;
// specular *= attenuation;
vec3 specular = vec3(0,0,0);
vec3 finalValue = vec3(0);
if(distance < pointLight.radius){
finalValue = (ambient + diffuse + specular);
finalValue = vec3(max(finalValue.x,0),max(finalValue.y,0),max(finalValue.z,0));
}
return finalValue;
}
/**
Finds the light cluster this fragment belongs to
*/
uint findCluster(vec3 viewspaceFragPos, float zNear, float zFar){
uint zTile = uint((log(abs(viewspaceFragPos.z) / zNear) * gridSize.z) / log(zFar / zNear));
vec2 tileSize = screenDimensions / gridSize.xy;
uvec3 tile = uvec3(gl_FragCoord.xy / tileSize, zTile);
return tile.x + (tile.y * gridSize.x) + (tile.z * gridSize.x * gridSize.y);
}
float ShadowCalculation(vec4 fragPosLightSpace, vec3 lightDir, vec3 normal){
// perform perspective divide
vec3 projCoords = fragPosLightSpace.xyz / fragPosLightSpace.w;
//transform to NDC
projCoords = projCoords * 0.5 + 0.5;
//get closest depth from light's POV
float closestDepth = texture(shadowMap, projCoords.xy).r;
//get depth of current fragment
float currentDepth = projCoords.z;
//calculate bias
float bias = max(0.05 * (1.0 - dot(normal, lightDir)), 0.005);
//calculate shadow value
float shadow = currentDepth - bias > closestDepth ? 1.0 : 0.0;
if(projCoords.z > 1.0){
shadow = 0.0;
}
//calculate dot product, if it is >0 we know they're parallel-ish therefore should disregard the shadow mapping
//ie the fragment is already facing away from the light source
float dotprod = dot(normalize(lightDir),normalize(normal));
if(dotprod > 0.0){
shadow = 0.0;
}
// shadow = currentDepth;
return clamp(1.0 - shadow, 0.0, 0.7);
}