Some checks failed
		
		
	
	studiorailgun/Renderer/pipeline/head There was a failure building this commit
				
			
		
			
				
	
	
		
			354 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			GLSL
		
	
	
	
	
	
			
		
		
	
	
			354 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			GLSL
		
	
	
	
	
	
| #version 450 core
 | |
| 
 | |
| //texture defines
 | |
| #define ATLAS_ELEMENT_DIM 256.0
 | |
| #define ATLAS_DIM 8192.0
 | |
| #define ATLAS_EL_PER_ROW 32
 | |
| #define ATLAS_NORMALIZED_ELEMENT_WIDTH 0.031 //within the single texture within the atlas, we use this so we never go over the end of the texture
 | |
| #define ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL 0.03125 //used to properly shift from texture to texture in the atlas
 | |
| 
 | |
| 
 | |
| /**
 | |
| Bind points for different SSBOs
 | |
| */
 | |
| #define CLUSTER_SSBO_BIND_POINT 1
 | |
| #define POINT_LIGHT_SSBO_BIND_POINT 2
 | |
| #define DIRECT_LIGHT_SSBO_BIND_POINT 3
 | |
| 
 | |
| 
 | |
| /**
 | |
| Maximum number of point lights
 | |
| */
 | |
| #define MAX_POINT_LIGHTS 512
 | |
| 
 | |
| /**
 | |
| Maximum number of lights per cluster
 | |
| */
 | |
| #define MAX_LIGHTS_PER_CLUSTER 100
 | |
| 
 | |
| /**
 | |
| The direct global light
 | |
| */
 | |
| struct DirectLight {
 | |
|     vec3 direction;
 | |
|     vec3 color;
 | |
| };
 | |
| 
 | |
| /**
 | |
| A point light
 | |
| */
 | |
| struct PointLight {
 | |
|     vec4 position;
 | |
|     vec4 color;
 | |
|     float constant;
 | |
|     float linear;
 | |
|     float quadratic;
 | |
|     float radius;
 | |
| };
 | |
| 
 | |
| /**
 | |
| A light cluster
 | |
| */
 | |
| struct Cluster {
 | |
|     vec4 minPoint;
 | |
|     vec4 maxPoint;
 | |
|     uint count;
 | |
|     uint lightIndices[MAX_LIGHTS_PER_CLUSTER];
 | |
| };
 | |
| 
 | |
| 
 | |
| out vec4 FragColor;
 | |
| 
 | |
| layout(std430, binding = CLUSTER_SSBO_BIND_POINT) restrict buffer clusterGridSSBO {
 | |
|     Cluster clusters[];
 | |
| };
 | |
| 
 | |
| layout(std430, binding = POINT_LIGHT_SSBO_BIND_POINT) restrict buffer pointLightSSBO {
 | |
|     PointLight pointLight[];
 | |
| };
 | |
| 
 | |
| layout(std430, binding = DIRECT_LIGHT_SSBO_BIND_POINT) restrict buffer dirLightSSBO {
 | |
|     DirectLight directLight;
 | |
| };
 | |
| 
 | |
| struct Material {
 | |
|     sampler2D diffuse;
 | |
|     sampler2D specular;
 | |
|     float shininess;
 | |
| }; 
 | |
| 
 | |
| in vec3 FragPos;
 | |
| in vec3 ViewFragPos;
 | |
| in vec3 Normal;
 | |
| in vec2 texPlane1;
 | |
| in vec2 texPlane2;
 | |
| in vec2 texPlane3;
 | |
| in vec4 FragPosLightSpace;
 | |
| in vec3 samplerIndexVec; //the indices in the atlas of textures to sample
 | |
| in vec3 samplerRatioVec; //the vector of HOW MUCH to pull from each texture in the atlas
 | |
| 
 | |
| 
 | |
| uniform vec3 viewPos;
 | |
| // uniform DirLight dirLight;
 | |
| // uniform PointLight pointLights[NR_POINT_LIGHTS];
 | |
| // uniform SpotLight spotLight;
 | |
| uniform Material material;
 | |
| 
 | |
| //texture stuff
 | |
| // uniform sampler2D ourTexture;
 | |
| uniform int hasTransparency;
 | |
| // uniform sampler2D specularTexture;
 | |
| 
 | |
| //light depth map
 | |
| uniform sampler2D shadowMap;
 | |
| 
 | |
| /**
 | |
| Used for light cluster calculation
 | |
| */
 | |
| uniform float zNear;
 | |
| uniform float zFar;
 | |
| uniform uvec3 gridSize;
 | |
| uniform uvec2 screenDimensions;
 | |
| uniform mat4 view;
 | |
| 
 | |
| 
 | |
| // function prototypes
 | |
| uint findCluster(vec3 FragPos, float zNear, float zFar);
 | |
| vec3 CalcPointLight(PointLight pointLight, vec3 normal, vec3 fragPos, vec3 viewDir);
 | |
| float calcLightIntensityTotal(vec3 normal);
 | |
| float ShadowCalculation(vec4 fragPosLightSpace, vec3 lightDir, vec3 normal);
 | |
| vec3 getColor(vec2 texPlane1, vec2 texPlane2, vec2 texPlane3, vec3 normal, vec3 samplerIndexVec, vec3 samplerRatioVec, Material material);
 | |
| 
 | |
| void main(){
 | |
|     vec3 norm = normalize(Normal);
 | |
|     vec3 viewDir = normalize(viewPos - FragPos);
 | |
|     
 | |
|     //grab light intensity
 | |
|     vec3 lightIntensity = vec3(calcLightIntensityTotal(norm));
 | |
| 
 | |
|     //get color of base texture
 | |
|     vec3 textureColor = getColor(texPlane1, texPlane2, texPlane3, norm, samplerIndexVec, samplerRatioVec, material);
 | |
| 
 | |
|     //shadow
 | |
|     float shadow = ShadowCalculation(FragPosLightSpace, normalize(-directLight.direction), norm);
 | |
| 
 | |
|     //
 | |
|     //point light calculations
 | |
|     uint clusterIndex = findCluster(ViewFragPos, zNear, zFar);
 | |
|     uint pointLightCount = clusters[clusterIndex].count;
 | |
|     for(int i = 0; i < pointLightCount; i++){
 | |
|         uint pointLightIndex = clusters[clusterIndex].lightIndices[i];
 | |
|         PointLight pointLight = pointLight[pointLightIndex];
 | |
|         lightIntensity = lightIntensity + CalcPointLight(pointLight, norm, FragPos, viewDir);
 | |
|     }
 | |
|     //error checking on light clusters
 | |
|     if(pointLightCount > MAX_LIGHTS_PER_CLUSTER){
 | |
|         FragColor = vec4(1.0f,0.0f,0.0f,1);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     //calculate final color
 | |
|     vec3 finalColor = textureColor * lightIntensity * max(shadow,0.4);
 | |
| 
 | |
|     //this final calculation is for transparency
 | |
|     FragColor = vec4(finalColor, 1);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * The function that gets the texture color based on the triplanar texture mapping and the voxel type at each point along the vert.
 | |
|  * See the triplanar mapping wiki article for an explanation of math involved.
 | |
|  */
 | |
| vec3 getColor(vec2 texPlane1, vec2 texPlane2, vec2 texPlane3, vec3 normal, vec3 samplerIndexVec, vec3 samplerRatioVec, Material material){
 | |
| 
 | |
|     vec3 weights = abs(normal);
 | |
| 
 | |
|     //what is the index in the atlas of the texture for a given vertex
 | |
|     int vert1AtlasIndex = int(samplerIndexVec.x);
 | |
|     int vert2AtlasIndex = int(samplerIndexVec.y);
 | |
|     int vert3AtlasIndex = int(samplerIndexVec.z);
 | |
| 
 | |
|     //what is the weight of that texture relative to the fragment
 | |
|     float vert1Weight = samplerRatioVec.x;
 | |
|     float vert2Weight = samplerRatioVec.y;
 | |
|     float vert3Weight = samplerRatioVec.z;
 | |
| 
 | |
|     //the x-wise uv of the texture for vert1
 | |
|     vec2 vert1_x_uv = vec2(
 | |
|         (fract(texPlane1.x) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (mod(samplerIndexVec.x,ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL),
 | |
|         (fract(texPlane1.y) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (round(samplerIndexVec.x / ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL)
 | |
|     );
 | |
|     //the x-wise uv of the texture for vert2
 | |
|     vec2 vert2_x_uv = vec2(
 | |
|         (fract(texPlane1.x) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (mod(samplerIndexVec.y,ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL),
 | |
|         (fract(texPlane1.y) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (round(samplerIndexVec.y / ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL)
 | |
|     );
 | |
|     //the x-wise uv of the texture for vert3
 | |
|     vec2 vert3_x_uv = vec2(
 | |
|         (fract(texPlane1.x) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (mod(samplerIndexVec.z,ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL),
 | |
|         (fract(texPlane1.y) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (round(samplerIndexVec.z / ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL)
 | |
|     );
 | |
|     //albedo for the X texture
 | |
|     vec3 albedoX = texture(material.diffuse, vert1_x_uv).rgb * vert1Weight + texture(material.diffuse, vert2_x_uv).rgb * vert2Weight + texture(material.diffuse, vert3_x_uv).rgb * vert3Weight;
 | |
| 
 | |
| 
 | |
|     //the y-wise uv of the texture for vert1
 | |
|     vec2 vert1_y_uv = vec2(
 | |
|         (fract(texPlane2.x) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (mod(samplerIndexVec.x,ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL),
 | |
|         (fract(texPlane2.y) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (round(samplerIndexVec.x / ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL)
 | |
|     );
 | |
|     //the y-wise uv of the texture for vert2
 | |
|     vec2 vert2_y_uv = vec2(
 | |
|         (fract(texPlane2.x) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (mod(samplerIndexVec.y,ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL),
 | |
|         (fract(texPlane2.y) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (round(samplerIndexVec.y / ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL)
 | |
|     );
 | |
|     //the y-wise uv of the texture for vert3
 | |
|     vec2 vert3_y_uv = vec2(
 | |
|         (fract(texPlane2.x) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (mod(samplerIndexVec.z,ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL),
 | |
|         (fract(texPlane2.y) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (round(samplerIndexVec.z / ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL)
 | |
|     );
 | |
|     //albedo for the X texture
 | |
|     vec3 albedoY = texture(material.diffuse, vert1_y_uv).rgb * vert1Weight + texture(material.diffuse, vert2_y_uv).rgb * vert2Weight + texture(material.diffuse, vert3_y_uv).rgb * vert3Weight;
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
|     //the z-wise uv of the texture for vert1
 | |
|     vec2 vert1_z_uv = vec2(
 | |
|         (fract(texPlane3.x) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (mod(samplerIndexVec.x,ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL),
 | |
|         (fract(texPlane3.y) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (round(samplerIndexVec.x / ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL)
 | |
|     );
 | |
|     //the z-wise uv of the texture for vert2
 | |
|     vec2 vert2_z_uv = vec2(
 | |
|         (fract(texPlane3.x) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (mod(samplerIndexVec.y,ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL),
 | |
|         (fract(texPlane3.y) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (round(samplerIndexVec.y / ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL)
 | |
|     );
 | |
|     //the z-wise uv of the texture for vert3
 | |
|     vec2 vert3_z_uv = vec2(
 | |
|         (fract(texPlane3.x) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (mod(samplerIndexVec.z,ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL),
 | |
|         (fract(texPlane3.y) * ATLAS_NORMALIZED_ELEMENT_WIDTH) + (round(samplerIndexVec.z / ATLAS_EL_PER_ROW) * ATLAS_NORMALIZED_ELEMENT_WIDTH_FULL)
 | |
|     );
 | |
|     //albedo for the X texture
 | |
|     vec3 albedoZ = texture(material.diffuse, vert1_z_uv).rgb * vert1Weight + texture(material.diffuse, vert2_z_uv).rgb * vert2Weight + texture(material.diffuse, vert3_z_uv).rgb * vert3Weight;
 | |
|     
 | |
| 
 | |
|     return (albedoX * weights.x + albedoY * weights.y + albedoZ * weights.z);
 | |
| }
 | |
| 
 | |
| //
 | |
| float calcLightIntensityAmbient(){
 | |
|     //calculate average of ambient light
 | |
|     float avg = (directLight.color.x + directLight.color.y + directLight.color.z)/3.0;
 | |
|     return avg;
 | |
| }
 | |
| 
 | |
| //
 | |
| float calcLightIntensityDir(vec3 normal){
 | |
|     vec3 lightDir = normalize(-directLight.direction);
 | |
|     // diffuse shading
 | |
|     float diff = max(dot(normal, lightDir), 0.0);
 | |
|     
 | |
|     return diff;
 | |
| }
 | |
| 
 | |
| //
 | |
| float calcLightIntensityTotal(vec3 normal){
 | |
|     //ambient intensity
 | |
|     float ambientLightIntensity = calcLightIntensityAmbient();
 | |
| 
 | |
|     //get direct intensity
 | |
|     float directLightIntensity = calcLightIntensityDir(normal);
 | |
| 
 | |
|     //sum
 | |
|     float total = ambientLightIntensity + directLightIntensity;
 | |
|     return total;
 | |
| }
 | |
| 
 | |
| //
 | |
| vec3 getTotalLightColor(vec3 normal){
 | |
|     //get the direct light color adjusted for intensity
 | |
|     vec3 diffuseLightColor = directLight.color * calcLightIntensityDir(normal);
 | |
| 
 | |
|     //sum light colors
 | |
|     vec3 totalLightColor = diffuseLightColor;
 | |
|     return totalLightColor;
 | |
| }
 | |
| 
 | |
| vec3 CalcPointLight(PointLight pointLight, vec3 normal, vec3 fragPos, vec3 viewDir){
 | |
|     vec3 lightDir = normalize(pointLight.position.xyz - fragPos);
 | |
|     // diffuse shading
 | |
|     float diff = max(dot(normal, lightDir), 0.0);
 | |
|     // specular shading
 | |
|     // vec3 reflectDir = reflect(-lightDir, normal);
 | |
|     // float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
 | |
|     // attenuation
 | |
|     float distance = length(pointLight.position.xyz - fragPos);
 | |
|     float attenuation = 1.0 / (pointLight.constant + pointLight.linear * distance + pointLight.quadratic * (distance * distance));
 | |
|     if(distance > pointLight.radius){
 | |
|         attenuation = 0;
 | |
|     }
 | |
|     // combine results
 | |
|     vec3 ambient = pointLight.color.xyz;// * vec4(texture(material.diffuse, TexCoord)).xyz;
 | |
|     vec3 diffuse = pointLight.color.xyz * diff;// * vec4(texture(material.diffuse, TexCoord)).xyz;
 | |
|     // vec3 specular = pLspecular[i] * spec;// * vec4(texture(material.specular, TexCoord)).xyz;
 | |
|     ambient = ambient * attenuation;
 | |
|     diffuse = diffuse * attenuation;
 | |
|     // specular *= attenuation;
 | |
|     vec3 specular = vec3(0,0,0);
 | |
| 
 | |
|     vec3 finalValue = vec3(0);
 | |
|     if(distance < pointLight.radius){
 | |
|         finalValue = (ambient + diffuse + specular);
 | |
|         finalValue = vec3(max(finalValue.x,0),max(finalValue.y,0),max(finalValue.z,0));
 | |
|     }
 | |
| 
 | |
|     return finalValue;
 | |
| }
 | |
| 
 | |
| /**
 | |
| Finds the light cluster this fragment belongs to
 | |
| */
 | |
| uint findCluster(vec3 viewspaceFragPos, float zNear, float zFar){
 | |
|     uint zTile = uint((log(abs(viewspaceFragPos.z) / zNear) * gridSize.z) / log(zFar / zNear));
 | |
|     vec2 tileSize = screenDimensions / gridSize.xy;
 | |
|     uvec3 tile = uvec3(gl_FragCoord.xy / tileSize, zTile);
 | |
|     return tile.x + (tile.y * gridSize.x) + (tile.z * gridSize.x * gridSize.y);
 | |
| }
 | |
| 
 | |
| 
 | |
| float ShadowCalculation(vec4 fragPosLightSpace, vec3 lightDir, vec3 normal){
 | |
| 
 | |
|     // perform perspective divide
 | |
|     vec3 projCoords = fragPosLightSpace.xyz / fragPosLightSpace.w;
 | |
| 
 | |
|     //transform to NDC
 | |
|     projCoords = projCoords * 0.5 + 0.5;
 | |
| 
 | |
|     //get closest depth from light's POV
 | |
|     float closestDepth = texture(shadowMap, projCoords.xy).r;
 | |
| 
 | |
|     //get depth of current fragment
 | |
|     float currentDepth = projCoords.z;
 | |
|     
 | |
|     //calculate bias
 | |
|     float bias = max(0.05 * (1.0 - dot(normal, lightDir)), 0.005);
 | |
| 
 | |
|     //calculate shadow value
 | |
|     float shadow = currentDepth - bias > closestDepth  ? 1.0 : 0.0;
 | |
| 
 | |
|     if(projCoords.z > 1.0){
 | |
|         shadow = 0.0;
 | |
|     }
 | |
| 
 | |
|     //calculate dot product, if it is >0 we know they're parallel-ish therefore should disregard the shadow mapping
 | |
|     //ie the fragment is already facing away from the light source
 | |
|     float dotprod = dot(normalize(lightDir),normalize(normal));
 | |
| 
 | |
|     if(dotprod > 0.0){
 | |
|         shadow = 0.0;
 | |
|     }
 | |
| 
 | |
|     // shadow = currentDepth;
 | |
| 
 | |
|     return shadow;
 | |
| } |