352 lines
11 KiB
GLSL
352 lines
11 KiB
GLSL
/*
|
|
MIT License
|
|
|
|
Copyright (c) 2022 railgunSR
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in all
|
|
copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
SOFTWARE.
|
|
*/
|
|
/*
|
|
THIS MAKES USE OF OPENSIMPLEX2, A NOISE ALGORITHM CREATED BY THE FINE FOLKS
|
|
OVER AT https://github.com/KdotJPG/OpenSimplex2
|
|
PLEASE GIVE THEM SOME LOVE.
|
|
|
|
IT ALSO MAKES USE OF FUNCTIONS FROM THE_FORCE, A SHADER IDE
|
|
https://github.com/shawnlawson/The_Force
|
|
|
|
*/
|
|
|
|
//version
|
|
#version 330 core
|
|
|
|
//output
|
|
// out vec4 fragColor;
|
|
|
|
layout (location = 0) out vec4 accum;
|
|
layout (location = 1) out float reveal;
|
|
|
|
//input
|
|
in vec3 FragPos;
|
|
in vec3 Normal;
|
|
in vec2 TexCoord;
|
|
in vec4 projCoord;
|
|
in vec4 modelCoord;
|
|
|
|
//uniforms
|
|
uniform float time;
|
|
|
|
//layout uniforms
|
|
uniform sampler2D shadowMap;
|
|
uniform sampler2D volumeDepthFrontface;
|
|
uniform sampler2D volumeDepthBackface;
|
|
|
|
//function declarations
|
|
vec4 openSimplex2_Conventional(vec3 X);
|
|
vec4 openSimplex2_ImproveXY(vec3 X);
|
|
float flameTex(float x, float y);
|
|
float getNoise(float scale, float timeScale);
|
|
float voronoi(vec2 point);
|
|
vec3 voronoi(vec3 x);
|
|
float linearCenterAroundPoint(float inputPt, float centerpoint, float falloff);
|
|
|
|
/*
|
|
Main method
|
|
*/
|
|
void main(){
|
|
|
|
float timeS = time * 0.003;
|
|
|
|
// Normalized pixel coordinates (from 0 to 1)
|
|
vec3 projCoordNorm = projCoord.xyz / projCoord.w / 2.0 + 0.5;
|
|
//make vec2
|
|
vec2 finalProd = projCoordNorm.xy;
|
|
//grab depth values
|
|
float closeDepth = texture(volumeDepthFrontface, finalProd.xy).r;
|
|
float farDepth = texture(volumeDepthBackface, finalProd.xy).r;
|
|
//distance between the two
|
|
float volume = min(abs(farDepth - closeDepth),1);
|
|
|
|
|
|
//based on distance of model coords from center
|
|
float dist = length(modelCoord.xyz);
|
|
|
|
|
|
//noise
|
|
// float noiseInX = modelCoord.x * 7.0;
|
|
// float noiseInZ = FragPos.y * 7.0 - timeS;
|
|
// float noiseInY = modelCoord.y * 7.0;
|
|
// float noise = openSimplex2_ImproveXY(vec3(noiseInX,noiseInY,noiseInZ)).x;
|
|
float noise = (getNoise(7.0,1.5 * timeS) + getNoise(10.0,1.5 * (timeS + 0.1)) + getNoise(14.0,1.5 * (timeS + 0.2)) + getNoise(20.0,3.0 * timeS)) / 4.0;
|
|
// float noise = getNoise(10.0,1.5);
|
|
// float noise = getNoise(14.0,2.0);
|
|
|
|
float vertical = -modelCoord.z;
|
|
|
|
float amountOfFire = volume * 50.0 + vertical * 2.0 + noise * 0.1;// + dist * 0.1; //should be a function of volume + noise + dist from center
|
|
|
|
// if(amountOfFire < 0.1){
|
|
// discard;
|
|
// }
|
|
|
|
amountOfFire = amountOfFire * 2.0;
|
|
|
|
float red = 0.1984;
|
|
float green = 0.6464;
|
|
float blue = 0.7366;
|
|
float alpha = volume * 7.0;
|
|
|
|
volume = volume * 3;
|
|
|
|
float foamFallout = max(1 - (volume * 7),0);
|
|
float lightWaterVal = max(1 - (volume * 3),0);
|
|
float darkWaterVal = linearCenterAroundPoint(volume,0.5,0.5);
|
|
float blackWaterVal = max((volume * 3) - 2,0);
|
|
|
|
red = 0.1984 * lightWaterVal + darkWaterVal * 0.0000 + blackWaterVal * 0.0000;
|
|
green = 0.6464 * lightWaterVal + darkWaterVal * 0.1370 + blackWaterVal * 0.0980;
|
|
blue = 0.7366 * lightWaterVal + darkWaterVal * 0.3140 + blackWaterVal * 0.2200;
|
|
|
|
if(dot(Normal,vec3(0,1,0)) > 0.5){
|
|
float foamVal = voronoi(vec3(modelCoord.x * 8,modelCoord.z * 8,timeS)).x;
|
|
// foamVal = foamVal * foamVal * min(1 - volume * 10,0);
|
|
foamVal = foamVal * foamVal;
|
|
red = red + foamVal;// * foamFallout;
|
|
blue = blue + foamVal;// * foamFallout;
|
|
green = green + foamVal;// * foamFallout;
|
|
alpha = alpha + foamVal;// * foamFallout;
|
|
// // float foamVal = openSimplex2_ImproveXY(vec3(modelCoord.x * 5.0,modelCoord.z * 5.0,timeS)).x;
|
|
// // if(foamVal > 0.4 && foamVal < 0.7){
|
|
// // foamVal = 1.0 - foamVal * foamVal;
|
|
// // red = foamVal + red;
|
|
// // green = foamVal + green;
|
|
// // blue = foamVal + blue;
|
|
// // alpha = foamVal + alpha;
|
|
// // }
|
|
}
|
|
|
|
// alpha = 0.5;
|
|
|
|
// float red = volume * 10.0;
|
|
// float green = volume * 10.0;
|
|
// float blue = volume * 10.0;
|
|
// float alpha = 1.0;
|
|
|
|
vec4 noiseVal = openSimplex2_Conventional(vec3(
|
|
projCoordNorm.x * 20,
|
|
projCoordNorm.y * 20,
|
|
projCoordNorm.z * 20 + timeS * 3));
|
|
|
|
vec4 color = vec4(
|
|
noiseVal.x,
|
|
noiseVal.y,
|
|
noiseVal.z,
|
|
alpha * volume
|
|
);
|
|
|
|
|
|
// weight function
|
|
float weight = clamp(pow(min(1.0, color.a * 10.0) + 0.01, 3.0) * 1e8 * pow(1.0 - gl_FragCoord.z * 0.9, 3.0), 1e-2, 3e3);
|
|
|
|
// store pixel color accumulation
|
|
accum = vec4(color.rgb,1);
|
|
|
|
// store pixel revealage threshold
|
|
reveal = volume;
|
|
// reveal = 1.0;
|
|
|
|
// if(val < 0.3){
|
|
// discard;
|
|
// }
|
|
|
|
// Output to screen
|
|
// fragColor = color;
|
|
}
|
|
|
|
|
|
float getNoise(float scale, float time){
|
|
float noiseInX = modelCoord.x * scale;
|
|
float noiseInZ = FragPos.y * scale - time;
|
|
float noiseInY = modelCoord.y * scale;
|
|
float noise = openSimplex2_ImproveXY(vec3(noiseInX,noiseInY,noiseInZ)).x;
|
|
return noise;
|
|
}
|
|
|
|
|
|
//////////////// K.jpg's Re-oriented 4-Point BCC Noise (OpenSimplex2) ////////////////
|
|
////////////////////// Output: vec4(dF/dx, dF/dy, dF/dz, value) //////////////////////
|
|
|
|
// Inspired by Stefan Gustavson's noise
|
|
vec4 permute(vec4 t) {
|
|
return t * (t * 34.0 + 133.0);
|
|
}
|
|
|
|
// Gradient set is a normalized expanded rhombic dodecahedron
|
|
vec3 grad(float hash) {
|
|
|
|
// Random vertex of a cube, +/- 1 each
|
|
vec3 cube = mod(floor(hash / vec3(1.0, 2.0, 4.0)), 2.0) * 2.0 - 1.0;
|
|
|
|
// Random edge of the three edges connected to that vertex
|
|
// Also a cuboctahedral vertex
|
|
// And corresponds to the face of its dual, the rhombic dodecahedron
|
|
vec3 cuboct = cube;
|
|
cuboct[int(hash / 16.0)] = 0.0;
|
|
|
|
// In a funky way, pick one of the four points on the rhombic face
|
|
float type = mod(floor(hash / 8.0), 2.0);
|
|
vec3 rhomb = (1.0 - type) * cube + type * (cuboct + cross(cube, cuboct));
|
|
|
|
// Expand it so that the new edges are the same length
|
|
// as the existing ones
|
|
vec3 grad = cuboct * 1.22474487139 + rhomb;
|
|
|
|
// To make all gradients the same length, we only need to shorten the
|
|
// second type of vector. We also put in the whole noise scale constant.
|
|
// The compiler should reduce it into the existing floats. I think.
|
|
grad *= (1.0 - 0.042942436724648037 * type) * 32.80201376986577;
|
|
|
|
return grad;
|
|
}
|
|
|
|
// BCC lattice split up into 2 cube lattices
|
|
vec4 openSimplex2Base(vec3 X) {
|
|
|
|
// First half-lattice, closest edge
|
|
vec3 v1 = round(X);
|
|
vec3 d1 = X - v1;
|
|
vec3 score1 = abs(d1);
|
|
vec3 dir1 = step(max(score1.yzx, score1.zxy), score1);
|
|
vec3 v2 = v1 + dir1 * sign(d1);
|
|
vec3 d2 = X - v2;
|
|
|
|
// Second half-lattice, closest edge
|
|
vec3 X2 = X + 144.5;
|
|
vec3 v3 = round(X2);
|
|
vec3 d3 = X2 - v3;
|
|
vec3 score2 = abs(d3);
|
|
vec3 dir2 = step(max(score2.yzx, score2.zxy), score2);
|
|
vec3 v4 = v3 + dir2 * sign(d3);
|
|
vec3 d4 = X2 - v4;
|
|
|
|
// Gradient hashes for the four points, two from each half-lattice
|
|
vec4 hashes = permute(mod(vec4(v1.x, v2.x, v3.x, v4.x), 289.0));
|
|
hashes = permute(mod(hashes + vec4(v1.y, v2.y, v3.y, v4.y), 289.0));
|
|
hashes = mod(permute(mod(hashes + vec4(v1.z, v2.z, v3.z, v4.z), 289.0)), 48.0);
|
|
|
|
// Gradient extrapolations & kernel function
|
|
vec4 a = max(0.5 - vec4(dot(d1, d1), dot(d2, d2), dot(d3, d3), dot(d4, d4)), 0.0);
|
|
vec4 aa = a * a; vec4 aaaa = aa * aa;
|
|
vec3 g1 = grad(hashes.x); vec3 g2 = grad(hashes.y);
|
|
vec3 g3 = grad(hashes.z); vec3 g4 = grad(hashes.w);
|
|
vec4 extrapolations = vec4(dot(d1, g1), dot(d2, g2), dot(d3, g3), dot(d4, g4));
|
|
|
|
// Derivatives of the noise
|
|
vec3 derivative = -8.0 * mat4x3(d1, d2, d3, d4) * (aa * a * extrapolations)
|
|
+ mat4x3(g1, g2, g3, g4) * aaaa;
|
|
|
|
// Return it all as a vec4
|
|
return vec4(derivative, dot(aaaa, extrapolations));
|
|
}
|
|
|
|
// Use this if you don't want Z to look different from X and Y
|
|
vec4 openSimplex2_Conventional(vec3 X) {
|
|
|
|
// Rotate around the main diagonal. Not a skew transform.
|
|
vec4 result = openSimplex2Base(dot(X, vec3(2.0/3.0)) - X);
|
|
return vec4(dot(result.xyz, vec3(2.0/3.0)) - result.xyz, result.w);
|
|
}
|
|
|
|
// Use this if you want to show X and Y in a plane, then use Z for time, vertical, etc.
|
|
vec4 openSimplex2_ImproveXY(vec3 X) {
|
|
|
|
// Rotate so Z points down the main diagonal. Not a skew transform.
|
|
mat3 orthonormalMap = mat3(
|
|
0.788675134594813, -0.211324865405187, -0.577350269189626,
|
|
-0.211324865405187, 0.788675134594813, -0.577350269189626,
|
|
0.577350269189626, 0.577350269189626, 0.577350269189626);
|
|
|
|
vec4 result = openSimplex2Base(orthonormalMap * X);
|
|
return vec4(result.xyz * orthonormalMap, result.w);
|
|
}
|
|
|
|
const mat2 myt = mat2(.12121212,.13131313,-.13131313,.12121212);
|
|
const vec2 mys = vec2(1e4, 1e6);
|
|
vec2 rhash(vec2 uv) {
|
|
uv *= myt;
|
|
uv *= mys;
|
|
return fract(fract(uv/mys)*uv);
|
|
}
|
|
|
|
vec3 hash( vec3 p ){
|
|
return fract(sin(vec3( dot(p,vec3(1.0,57.0,113.0)),
|
|
dot(p,vec3(57.0,113.0,1.0)),
|
|
dot(p,vec3(113.0,1.0,57.0))))*43758.5453);
|
|
|
|
}
|
|
|
|
float voronoi(vec2 point){
|
|
vec2 p = floor( point );
|
|
vec2 f = fract( point );
|
|
float res = 0.0;
|
|
for( int j=-1; j<=1; j++ ) {
|
|
for( int i=-1; i<=1; i++ ) {
|
|
vec2 b = vec2( i, j );
|
|
vec2 r = vec2( b ) - f + rhash( p + b);
|
|
res += 1./pow(dot(r,r),8.);
|
|
}
|
|
}
|
|
return pow(1./res, 0.0625);
|
|
}
|
|
|
|
vec3 voronoi(vec3 x) {
|
|
vec3 p = floor( x );
|
|
vec3 f = fract( x );
|
|
|
|
float id = 0.0;
|
|
vec2 res = vec2( 100.0 );
|
|
for( int k=-1; k<=1; k++ ) {
|
|
for( int j=-1; j<=1; j++ ) {
|
|
for( int i=-1; i<=1; i++ ) {
|
|
vec3 b = vec3( float(i), float(j), float(k) );
|
|
vec3 r = vec3( b ) - f + hash( p + b );
|
|
float d = dot( r, r );
|
|
|
|
if( d < res.x ) {
|
|
id = dot( p+b, vec3(1.0,57.0,113.0 ) );
|
|
res = vec2( d, res.x );
|
|
}
|
|
else if( d < res.y ) {
|
|
res.y = d;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return vec3( sqrt( res ), abs(id) );
|
|
}
|
|
|
|
//////////////////////////////// End noise code ////////////////////////////////
|
|
|
|
|
|
float linearCenterAroundPoint(float inputPt, float centerpoint, float falloff){
|
|
return max(((-abs(inputPt - centerpoint)) + centerpoint)*falloff,0);
|
|
}
|
|
|
|
|
|
|