Renderer/assets/Shaders/entities/foliage/foliage.vs
austin de1ddecfba
All checks were successful
studiorailgun/Renderer/pipeline/head This commit looks good
move shaders around
2024-09-02 15:49:23 -04:00

348 lines
11 KiB
GLSL

//Vertex Shader
#version 430 core
//defines
#define PI 3.1415
#define grassWidth 0.01 //TODO: convert to uniform
//input buffers
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aNormal;
layout (location = 4) in vec2 aTex;
struct Material {
sampler2D diffuse;
sampler2D specular;
float shininess;
};
uniform Material material;
uniform sampler2D dataMap;
//coordinate space transformation matrices
uniform mat4 transform;
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;
uniform mat4 lightSpaceMatrix;
uniform vec3 viewPos;
uniform vec3 modelWorldPos;
uniform float time;
//output buffers
out vec3 Normal;
out vec3 FragPos;
out vec2 TexCoord;
out vec4 FragPosLightSpace;
out vec3 normalRot1;
out vec3 normalRot2;
//defines
mat4 rotation3dX(float angle);
mat4 rotation3dY(float angle);
mat4 rotation3dZ(float angle);
vec3 rotateY(vec3 vector, float angle);
float easeIn(float interpolator);
float easeOut(float interpolator);
float easeInOut(float interpolator);
float map(float value, float min1, float max1, float min2, float max2);
mat4 rotationMatrix(vec3 axis, float angle);
//lib defines
vec4 openSimplex2_Conventional(vec3 X);
vec4 openSimplex2_ImproveXY(vec3 X);
void main() {
//0 = left, 1 = right
float xDirection = mod(float(gl_VertexID), 2.0);
ivec2 texSize = textureSize(material.diffuse,0);
//grab data out of texture
float xOffset = texelFetch(material.diffuse,ivec2(0,gl_InstanceID),0).r;
float yOffset = texelFetch(material.diffuse,ivec2(1,gl_InstanceID),0).r;
float zOffset = texelFetch(material.diffuse,ivec2(2,gl_InstanceID),0).r;
float rotVar = texelFetch(material.diffuse,ivec2(3,gl_InstanceID),0).r;
float rotVar2 = texelFetch(material.diffuse,ivec2(4,gl_InstanceID),0).r;
//
//curve float noise
vec4 worldPos = vec4(
xOffset + modelWorldPos.x,
yOffset + modelWorldPos.y,
zOffset + modelWorldPos.z,
1.0
);
float curveFloatNoiseSample = clamp(map(openSimplex2_ImproveXY(vec3(worldPos.x,worldPos.z,time)).x,-1.0,1.0,0,1),0,1);
//
//calculate rotations
float curveAmount = rotVar2 * aPos.y * 5 + curveFloatNoiseSample.x * 0.01;
mat4 localRot = rotation3dY(rotVar);
mat4 localRot2 = rotation3dZ(curveAmount);
float windDirectionSpeedMagnitude = 0.05;
vec3 windDirectionMovementOverTime = vec3(
windDirectionSpeedMagnitude * time,
windDirectionSpeedMagnitude * time,
0
);
float windStrengthMagnitude = 0.2;
vec3 windStrengthOverTime = vec3(
windStrengthMagnitude * time,
windStrengthMagnitude * time,
0
);
//
//rotate with wind
float windDir = clamp(map(openSimplex2_ImproveXY(vec3(worldPos.x,worldPos.z,0) * 0.05 + windDirectionMovementOverTime).x,-1.0,1.0,0,1),0,1);
windDir = map(windDir,0.0,1.0,0.0,PI * 2.0);
//strength
float windStrength = clamp(map(openSimplex2_ImproveXY(vec3(worldPos.x,worldPos.z,0) * 0.2 + windStrengthOverTime).x,-3.0,3.0,0,1),0,1);
//try to shape with easeIn
float windLeanAngle = map(windStrength, 0.0, 1.0, 0.1, 0.9);
windLeanAngle = easeIn(windLeanAngle) * 1.25;
mat4 windRot = rotationMatrix(vec3(cos(windDir),0,sin(windDir)),windLeanAngle);
//
//position transform
mat4 localTransform = mat4(
1.0, 0.0, 0.0, 0.0, //column 1
0.0, 1.0, 0.0, 0.0, //column 2
0.0, 0.0, 1.0, 0.0, //column 3
xOffset, yOffset, zOffset, 1.0 //column 4
);
//normalize posiiton and normal
vec4 FinalVertex = model * localTransform * windRot * localRot * localRot2 * vec4(aPos, 1.0);
vec4 FinalNormal = windRot * localRot * localRot2 * vec4(aNormal, 1.0);
// vec4 FinalNormal = transpose(inverse(localRot2 * localRot * model * localTransform)) * vec4(aNormal, 1.0);
//normal offset
normalRot1 = rotateY(FinalNormal.rgb,PI * 0.3);
normalRot2 = rotateY(FinalNormal.rgb,PI * -0.3);
//
//shift in viewspace to make it feel slightly fuller
//
//dot view and normal
vec3 viewDir = normalize(viewPos - FinalVertex.xyz);
float viewDotNormal = clamp(dot(FinalNormal.xz,viewDir.xz),0,1);
//calculate thinkening factor to shift verts slightly based on view angle
float viewSpaceThickenFactor = easeOut(1.0 - viewDotNormal);
//as blade starts to become parallel with camera, want to allow it to shrink into nothing
viewSpaceThickenFactor *= smoothstep(0.0, 0.2, viewDotNormal);
//finally, apply adjustment to actual vert output
FinalVertex.x += viewSpaceThickenFactor * (xDirection - 0.5) * grassWidth;
//
//push frag, normal, and texture positions to fragment shader
//
FragPos = vec3(FinalVertex);
Normal = vec3(FinalNormal);
TexCoord = aTex;
//shadow map stuff
FragPosLightSpace = lightSpaceMatrix * vec4(FragPos, 1.0);
//set final position with opengl space
gl_Position = projection * view * FinalVertex;
}
mat4 rotation3dX(float angle) {
float s = sin(angle);
float c = cos(angle);
mat4 rVal = mat4(
1.0, 0.0, 0.0, 0.0,
0.0, c, s, 0.0,
0.0, -s, c, 0.0,
0.0, 0.0, 0.0, 1.0
);
return rVal;
}
vec3 rotateY(vec3 vector, float angle){
mat4 mat = rotation3dY(angle);
return (mat * vec4(vector,1.0)).xyz;
}
mat4 rotation3dY(float angle) {
float s = sin(angle);
float c = cos(angle);
mat4 rVal = mat4(
c, 0.0, -s, 0.0,
0.0, 1.0, 0.0, 0.0,
s, 0.0, c, 0.0,
0.0, 0.0, 0.0, 1.0
);
return rVal;
}
mat4 rotation3dZ(float angle) {
float s = sin(angle);
float c = cos(angle);
mat4 rVal = mat4(
c, s, 0.0, 0.0,
-s, c, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0
);
return rVal;
}
float easeIn(float interpolator){
return interpolator * interpolator;
}
float easeOut(float interpolator){
return 1 - easeIn(1 - interpolator);
}
float easeInOut(float interpolator){
float easeInValue = easeIn(interpolator);
float easeOutValue = easeOut(interpolator);
return mix(easeInValue, easeOutValue, interpolator);
}
float map(float value, float min1, float max1, float min2, float max2) {
return min2 + (value - min1) * (max2 - min2) / (max1 - min1);
}
mat4 rotationMatrix(vec3 axis, float angle){
axis = normalize(axis);
float s = sin(angle);
float c = cos(angle);
float oc = 1.0 - c;
return mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0,
oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0,
oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0,
0.0, 0.0, 0.0, 1.0);
}
//////////////// K.jpg's Re-oriented 4-Point BCC Noise (OpenSimplex2) ////////////////
////////////////////// Output: vec4(dF/dx, dF/dy, dF/dz, value) //////////////////////
// Inspired by Stefan Gustavson's noise
vec4 permute(vec4 t) {
return t * (t * 34.0 + 133.0);
}
// Gradient set is a normalized expanded rhombic dodecahedron
vec3 grad(float hash) {
// Random vertex of a cube, +/- 1 each
vec3 cube = mod(floor(hash / vec3(1.0, 2.0, 4.0)), 2.0) * 2.0 - 1.0;
// Random edge of the three edges connected to that vertex
// Also a cuboctahedral vertex
// And corresponds to the face of its dual, the rhombic dodecahedron
vec3 cuboct = cube;
cuboct[int(hash / 16.0)] = 0.0;
// In a funky way, pick one of the four points on the rhombic face
float type = mod(floor(hash / 8.0), 2.0);
vec3 rhomb = (1.0 - type) * cube + type * (cuboct + cross(cube, cuboct));
// Expand it so that the new edges are the same length
// as the existing ones
vec3 grad = cuboct * 1.22474487139 + rhomb;
// To make all gradients the same length, we only need to shorten the
// second type of vector. We also put in the whole noise scale constant.
// The compiler should reduce it into the existing floats. I think.
grad *= (1.0 - 0.042942436724648037 * type) * 32.80201376986577;
return grad;
}
// BCC lattice split up into 2 cube lattices
vec4 openSimplex2Base(vec3 X) {
// First half-lattice, closest edge
vec3 v1 = round(X);
vec3 d1 = X - v1;
vec3 score1 = abs(d1);
vec3 dir1 = step(max(score1.yzx, score1.zxy), score1);
vec3 v2 = v1 + dir1 * sign(d1);
vec3 d2 = X - v2;
// Second half-lattice, closest edge
vec3 X2 = X + 144.5;
vec3 v3 = round(X2);
vec3 d3 = X2 - v3;
vec3 score2 = abs(d3);
vec3 dir2 = step(max(score2.yzx, score2.zxy), score2);
vec3 v4 = v3 + dir2 * sign(d3);
vec3 d4 = X2 - v4;
// Gradient hashes for the four points, two from each half-lattice
vec4 hashes = permute(mod(vec4(v1.x, v2.x, v3.x, v4.x), 289.0));
hashes = permute(mod(hashes + vec4(v1.y, v2.y, v3.y, v4.y), 289.0));
hashes = mod(permute(mod(hashes + vec4(v1.z, v2.z, v3.z, v4.z), 289.0)), 48.0);
// Gradient extrapolations & kernel function
vec4 a = max(0.5 - vec4(dot(d1, d1), dot(d2, d2), dot(d3, d3), dot(d4, d4)), 0.0);
vec4 aa = a * a; vec4 aaaa = aa * aa;
vec3 g1 = grad(hashes.x); vec3 g2 = grad(hashes.y);
vec3 g3 = grad(hashes.z); vec3 g4 = grad(hashes.w);
vec4 extrapolations = vec4(dot(d1, g1), dot(d2, g2), dot(d3, g3), dot(d4, g4));
// Derivatives of the noise
vec3 derivative = -8.0 * mat4x3(d1, d2, d3, d4) * (aa * a * extrapolations)
+ mat4x3(g1, g2, g3, g4) * aaaa;
// Return it all as a vec4
return vec4(derivative, dot(aaaa, extrapolations));
}
// Use this if you don't want Z to look different from X and Y
vec4 openSimplex2_Conventional(vec3 X) {
// Rotate around the main diagonal. Not a skew transform.
vec4 result = openSimplex2Base(dot(X, vec3(2.0/3.0)) - X);
return vec4(dot(result.xyz, vec3(2.0/3.0)) - result.xyz, result.w);
}
// Use this if you want to show X and Y in a plane, then use Z for time, vertical, etc.
vec4 openSimplex2_ImproveXY(vec3 X) {
// Rotate so Z points down the main diagonal. Not a skew transform.
mat3 orthonormalMap = mat3(
0.788675134594813, -0.211324865405187, -0.577350269189626,
-0.211324865405187, 0.788675134594813, -0.577350269189626,
0.577350269189626, 0.577350269189626, 0.577350269189626);
vec4 result = openSimplex2Base(orthonormalMap * X);
return vec4(result.xyz * orthonormalMap, result.w);
}
//////////////////////////////// End noise code ////////////////////////////////