348 lines
11 KiB
GLSL
348 lines
11 KiB
GLSL
//Vertex Shader
|
|
#version 430 core
|
|
|
|
|
|
|
|
//defines
|
|
#define PI 3.1415
|
|
|
|
#define grassWidth 0.01 //TODO: convert to uniform
|
|
|
|
|
|
//input buffers
|
|
layout (location = 0) in vec3 aPos;
|
|
layout (location = 1) in vec3 aNormal;
|
|
layout (location = 4) in vec2 aTex;
|
|
|
|
|
|
struct Material {
|
|
sampler2D diffuse;
|
|
sampler2D specular;
|
|
float shininess;
|
|
};
|
|
|
|
uniform Material material;
|
|
|
|
uniform sampler2D dataMap;
|
|
|
|
//coordinate space transformation matrices
|
|
uniform mat4 transform;
|
|
uniform mat4 model;
|
|
uniform mat4 view;
|
|
uniform mat4 projection;
|
|
uniform mat4 lightSpaceMatrix;
|
|
uniform vec3 viewPos;
|
|
uniform vec3 modelWorldPos;
|
|
uniform float time;
|
|
|
|
|
|
|
|
//output buffers
|
|
out vec3 Normal;
|
|
out vec3 FragPos;
|
|
out vec2 TexCoord;
|
|
out vec4 FragPosLightSpace;
|
|
out vec3 normalRot1;
|
|
out vec3 normalRot2;
|
|
|
|
|
|
//defines
|
|
mat4 rotation3dX(float angle);
|
|
mat4 rotation3dY(float angle);
|
|
mat4 rotation3dZ(float angle);
|
|
vec3 rotateY(vec3 vector, float angle);
|
|
float easeIn(float interpolator);
|
|
float easeOut(float interpolator);
|
|
float easeInOut(float interpolator);
|
|
float map(float value, float min1, float max1, float min2, float max2);
|
|
mat4 rotationMatrix(vec3 axis, float angle);
|
|
|
|
//lib defines
|
|
vec4 openSimplex2_Conventional(vec3 X);
|
|
vec4 openSimplex2_ImproveXY(vec3 X);
|
|
|
|
|
|
void main() {
|
|
|
|
//0 = left, 1 = right
|
|
float xDirection = mod(float(gl_VertexID), 2.0);
|
|
|
|
ivec2 texSize = textureSize(material.diffuse,0);
|
|
|
|
//grab data out of texture
|
|
float xOffset = texelFetch(material.diffuse,ivec2(0,gl_InstanceID),0).r;
|
|
float yOffset = texelFetch(material.diffuse,ivec2(1,gl_InstanceID),0).r;
|
|
float zOffset = texelFetch(material.diffuse,ivec2(2,gl_InstanceID),0).r;
|
|
float rotVar = texelFetch(material.diffuse,ivec2(3,gl_InstanceID),0).r;
|
|
float rotVar2 = texelFetch(material.diffuse,ivec2(4,gl_InstanceID),0).r;
|
|
|
|
//
|
|
//curve float noise
|
|
vec4 worldPos = vec4(
|
|
xOffset + modelWorldPos.x,
|
|
yOffset + modelWorldPos.y,
|
|
zOffset + modelWorldPos.z,
|
|
1.0
|
|
);
|
|
float curveFloatNoiseSample = clamp(map(openSimplex2_ImproveXY(vec3(worldPos.x,worldPos.z,time)).x,-1.0,1.0,0,1),0,1);
|
|
|
|
//
|
|
//calculate rotations
|
|
float curveAmount = rotVar2 * aPos.y * 5 + curveFloatNoiseSample.x * 0.01;
|
|
mat4 localRot = rotation3dY(rotVar);
|
|
mat4 localRot2 = rotation3dZ(curveAmount);
|
|
|
|
float windDirectionSpeedMagnitude = 0.05;
|
|
vec3 windDirectionMovementOverTime = vec3(
|
|
windDirectionSpeedMagnitude * time,
|
|
windDirectionSpeedMagnitude * time,
|
|
0
|
|
);
|
|
|
|
|
|
float windStrengthMagnitude = 0.2;
|
|
vec3 windStrengthOverTime = vec3(
|
|
windStrengthMagnitude * time,
|
|
windStrengthMagnitude * time,
|
|
0
|
|
);
|
|
|
|
//
|
|
//rotate with wind
|
|
float windDir = clamp(map(openSimplex2_ImproveXY(vec3(worldPos.x,worldPos.z,0) * 0.05 + windDirectionMovementOverTime).x,-1.0,1.0,0,1),0,1);
|
|
windDir = map(windDir,0.0,1.0,0.0,PI * 2.0);
|
|
//strength
|
|
float windStrength = clamp(map(openSimplex2_ImproveXY(vec3(worldPos.x,worldPos.z,0) * 0.2 + windStrengthOverTime).x,-3.0,3.0,0,1),0,1);
|
|
//try to shape with easeIn
|
|
float windLeanAngle = map(windStrength, 0.0, 1.0, 0.1, 0.9);
|
|
windLeanAngle = easeIn(windLeanAngle) * 1.25;
|
|
mat4 windRot = rotationMatrix(vec3(cos(windDir),0,sin(windDir)),windLeanAngle);
|
|
|
|
|
|
//
|
|
//position transform
|
|
mat4 localTransform = mat4(
|
|
1.0, 0.0, 0.0, 0.0, //column 1
|
|
0.0, 1.0, 0.0, 0.0, //column 2
|
|
0.0, 0.0, 1.0, 0.0, //column 3
|
|
xOffset, yOffset, zOffset, 1.0 //column 4
|
|
);
|
|
|
|
//normalize posiiton and normal
|
|
vec4 FinalVertex = model * localTransform * windRot * localRot * localRot2 * vec4(aPos, 1.0);
|
|
vec4 FinalNormal = windRot * localRot * localRot2 * vec4(aNormal, 1.0);
|
|
// vec4 FinalNormal = transpose(inverse(localRot2 * localRot * model * localTransform)) * vec4(aNormal, 1.0);
|
|
|
|
//normal offset
|
|
normalRot1 = rotateY(FinalNormal.rgb,PI * 0.3);
|
|
normalRot2 = rotateY(FinalNormal.rgb,PI * -0.3);
|
|
|
|
|
|
//
|
|
//shift in viewspace to make it feel slightly fuller
|
|
//
|
|
//dot view and normal
|
|
vec3 viewDir = normalize(viewPos - FinalVertex.xyz);
|
|
float viewDotNormal = clamp(dot(FinalNormal.xz,viewDir.xz),0,1);
|
|
//calculate thinkening factor to shift verts slightly based on view angle
|
|
float viewSpaceThickenFactor = easeOut(1.0 - viewDotNormal);
|
|
//as blade starts to become parallel with camera, want to allow it to shrink into nothing
|
|
viewSpaceThickenFactor *= smoothstep(0.0, 0.2, viewDotNormal);
|
|
//finally, apply adjustment to actual vert output
|
|
FinalVertex.x += viewSpaceThickenFactor * (xDirection - 0.5) * grassWidth;
|
|
|
|
|
|
//
|
|
//push frag, normal, and texture positions to fragment shader
|
|
//
|
|
FragPos = vec3(FinalVertex);
|
|
Normal = vec3(FinalNormal);
|
|
TexCoord = aTex;
|
|
|
|
|
|
//shadow map stuff
|
|
FragPosLightSpace = lightSpaceMatrix * vec4(FragPos, 1.0);
|
|
|
|
|
|
//set final position with opengl space
|
|
gl_Position = projection * view * FinalVertex;
|
|
}
|
|
|
|
mat4 rotation3dX(float angle) {
|
|
float s = sin(angle);
|
|
float c = cos(angle);
|
|
|
|
mat4 rVal = mat4(
|
|
1.0, 0.0, 0.0, 0.0,
|
|
0.0, c, s, 0.0,
|
|
0.0, -s, c, 0.0,
|
|
0.0, 0.0, 0.0, 1.0
|
|
);
|
|
|
|
return rVal;
|
|
}
|
|
|
|
vec3 rotateY(vec3 vector, float angle){
|
|
mat4 mat = rotation3dY(angle);
|
|
return (mat * vec4(vector,1.0)).xyz;
|
|
}
|
|
|
|
mat4 rotation3dY(float angle) {
|
|
float s = sin(angle);
|
|
float c = cos(angle);
|
|
|
|
mat4 rVal = mat4(
|
|
c, 0.0, -s, 0.0,
|
|
0.0, 1.0, 0.0, 0.0,
|
|
s, 0.0, c, 0.0,
|
|
0.0, 0.0, 0.0, 1.0
|
|
);
|
|
|
|
return rVal;
|
|
}
|
|
|
|
mat4 rotation3dZ(float angle) {
|
|
float s = sin(angle);
|
|
float c = cos(angle);
|
|
|
|
mat4 rVal = mat4(
|
|
c, s, 0.0, 0.0,
|
|
-s, c, 0.0, 0.0,
|
|
0.0, 0.0, 1.0, 0.0,
|
|
0.0, 0.0, 0.0, 1.0
|
|
);
|
|
|
|
return rVal;
|
|
}
|
|
|
|
|
|
float easeIn(float interpolator){
|
|
return interpolator * interpolator;
|
|
}
|
|
|
|
float easeOut(float interpolator){
|
|
return 1 - easeIn(1 - interpolator);
|
|
}
|
|
|
|
float easeInOut(float interpolator){
|
|
float easeInValue = easeIn(interpolator);
|
|
float easeOutValue = easeOut(interpolator);
|
|
return mix(easeInValue, easeOutValue, interpolator);
|
|
}
|
|
|
|
float map(float value, float min1, float max1, float min2, float max2) {
|
|
return min2 + (value - min1) * (max2 - min2) / (max1 - min1);
|
|
}
|
|
|
|
|
|
mat4 rotationMatrix(vec3 axis, float angle){
|
|
axis = normalize(axis);
|
|
float s = sin(angle);
|
|
float c = cos(angle);
|
|
float oc = 1.0 - c;
|
|
|
|
return mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0,
|
|
oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0,
|
|
oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0,
|
|
0.0, 0.0, 0.0, 1.0);
|
|
}
|
|
|
|
|
|
//////////////// K.jpg's Re-oriented 4-Point BCC Noise (OpenSimplex2) ////////////////
|
|
////////////////////// Output: vec4(dF/dx, dF/dy, dF/dz, value) //////////////////////
|
|
|
|
// Inspired by Stefan Gustavson's noise
|
|
vec4 permute(vec4 t) {
|
|
return t * (t * 34.0 + 133.0);
|
|
}
|
|
|
|
// Gradient set is a normalized expanded rhombic dodecahedron
|
|
vec3 grad(float hash) {
|
|
|
|
// Random vertex of a cube, +/- 1 each
|
|
vec3 cube = mod(floor(hash / vec3(1.0, 2.0, 4.0)), 2.0) * 2.0 - 1.0;
|
|
|
|
// Random edge of the three edges connected to that vertex
|
|
// Also a cuboctahedral vertex
|
|
// And corresponds to the face of its dual, the rhombic dodecahedron
|
|
vec3 cuboct = cube;
|
|
cuboct[int(hash / 16.0)] = 0.0;
|
|
|
|
// In a funky way, pick one of the four points on the rhombic face
|
|
float type = mod(floor(hash / 8.0), 2.0);
|
|
vec3 rhomb = (1.0 - type) * cube + type * (cuboct + cross(cube, cuboct));
|
|
|
|
// Expand it so that the new edges are the same length
|
|
// as the existing ones
|
|
vec3 grad = cuboct * 1.22474487139 + rhomb;
|
|
|
|
// To make all gradients the same length, we only need to shorten the
|
|
// second type of vector. We also put in the whole noise scale constant.
|
|
// The compiler should reduce it into the existing floats. I think.
|
|
grad *= (1.0 - 0.042942436724648037 * type) * 32.80201376986577;
|
|
|
|
return grad;
|
|
}
|
|
|
|
// BCC lattice split up into 2 cube lattices
|
|
vec4 openSimplex2Base(vec3 X) {
|
|
|
|
// First half-lattice, closest edge
|
|
vec3 v1 = round(X);
|
|
vec3 d1 = X - v1;
|
|
vec3 score1 = abs(d1);
|
|
vec3 dir1 = step(max(score1.yzx, score1.zxy), score1);
|
|
vec3 v2 = v1 + dir1 * sign(d1);
|
|
vec3 d2 = X - v2;
|
|
|
|
// Second half-lattice, closest edge
|
|
vec3 X2 = X + 144.5;
|
|
vec3 v3 = round(X2);
|
|
vec3 d3 = X2 - v3;
|
|
vec3 score2 = abs(d3);
|
|
vec3 dir2 = step(max(score2.yzx, score2.zxy), score2);
|
|
vec3 v4 = v3 + dir2 * sign(d3);
|
|
vec3 d4 = X2 - v4;
|
|
|
|
// Gradient hashes for the four points, two from each half-lattice
|
|
vec4 hashes = permute(mod(vec4(v1.x, v2.x, v3.x, v4.x), 289.0));
|
|
hashes = permute(mod(hashes + vec4(v1.y, v2.y, v3.y, v4.y), 289.0));
|
|
hashes = mod(permute(mod(hashes + vec4(v1.z, v2.z, v3.z, v4.z), 289.0)), 48.0);
|
|
|
|
// Gradient extrapolations & kernel function
|
|
vec4 a = max(0.5 - vec4(dot(d1, d1), dot(d2, d2), dot(d3, d3), dot(d4, d4)), 0.0);
|
|
vec4 aa = a * a; vec4 aaaa = aa * aa;
|
|
vec3 g1 = grad(hashes.x); vec3 g2 = grad(hashes.y);
|
|
vec3 g3 = grad(hashes.z); vec3 g4 = grad(hashes.w);
|
|
vec4 extrapolations = vec4(dot(d1, g1), dot(d2, g2), dot(d3, g3), dot(d4, g4));
|
|
|
|
// Derivatives of the noise
|
|
vec3 derivative = -8.0 * mat4x3(d1, d2, d3, d4) * (aa * a * extrapolations)
|
|
+ mat4x3(g1, g2, g3, g4) * aaaa;
|
|
|
|
// Return it all as a vec4
|
|
return vec4(derivative, dot(aaaa, extrapolations));
|
|
}
|
|
|
|
// Use this if you don't want Z to look different from X and Y
|
|
vec4 openSimplex2_Conventional(vec3 X) {
|
|
|
|
// Rotate around the main diagonal. Not a skew transform.
|
|
vec4 result = openSimplex2Base(dot(X, vec3(2.0/3.0)) - X);
|
|
return vec4(dot(result.xyz, vec3(2.0/3.0)) - result.xyz, result.w);
|
|
}
|
|
|
|
// Use this if you want to show X and Y in a plane, then use Z for time, vertical, etc.
|
|
vec4 openSimplex2_ImproveXY(vec3 X) {
|
|
|
|
// Rotate so Z points down the main diagonal. Not a skew transform.
|
|
mat3 orthonormalMap = mat3(
|
|
0.788675134594813, -0.211324865405187, -0.577350269189626,
|
|
-0.211324865405187, 0.788675134594813, -0.577350269189626,
|
|
0.577350269189626, 0.577350269189626, 0.577350269189626);
|
|
|
|
vec4 result = openSimplex2Base(orthonormalMap * X);
|
|
return vec4(result.xyz * orthonormalMap, result.w);
|
|
}
|
|
|
|
//////////////////////////////// End noise code //////////////////////////////// |