209 lines
5.3 KiB
GLSL
209 lines
5.3 KiB
GLSL
//uncomment if working on this library file:
|
|
//#version 450 core
|
|
|
|
/**
|
|
Maximum number of point lights
|
|
*/
|
|
#define MAX_POINT_LIGHTS 512
|
|
|
|
/**
|
|
Maximum number of lights per cluster
|
|
*/
|
|
#define MAX_LIGHTS_PER_CLUSTER 100
|
|
|
|
/**
|
|
Bind points for different SSBOs
|
|
*/
|
|
#define CLUSTER_SSBO_BIND_POINT 1
|
|
#define POINT_LIGHT_SSBO_BIND_POINT 2
|
|
#define DIRECT_LIGHT_SSBO_BIND_POINT 3
|
|
|
|
/**
|
|
The direct global light
|
|
*/
|
|
struct DirectLight {
|
|
vec3 direction;
|
|
vec3 color;
|
|
};
|
|
|
|
/**
|
|
A point light
|
|
*/
|
|
struct PointLight {
|
|
vec4 position;
|
|
vec4 color;
|
|
float constant;
|
|
float linear;
|
|
float quadratic;
|
|
float radius;
|
|
};
|
|
|
|
/**
|
|
A light cluster
|
|
*/
|
|
struct Cluster {
|
|
vec4 minPoint;
|
|
vec4 maxPoint;
|
|
uint count;
|
|
uint lightIndices[MAX_LIGHTS_PER_CLUSTER];
|
|
};
|
|
|
|
/**
|
|
Cutoff for fragment alpha
|
|
*/
|
|
#define FRAGMENT_ALPHA_CUTOFF 0.001
|
|
|
|
layout(std430, binding = CLUSTER_SSBO_BIND_POINT) restrict buffer clusterGridSSBO {
|
|
Cluster clusters[];
|
|
};
|
|
|
|
layout(std430, binding = POINT_LIGHT_SSBO_BIND_POINT) restrict buffer pointLightSSBO {
|
|
PointLight pointLight[];
|
|
};
|
|
|
|
layout(std430, binding = DIRECT_LIGHT_SSBO_BIND_POINT) restrict buffer dirLightSSBO {
|
|
DirectLight directLight;
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
Used for light cluster calculation
|
|
*/
|
|
uniform float zNear;
|
|
uniform float zFar;
|
|
uniform uvec3 gridSize;
|
|
uniform uvec2 screenDimensions;
|
|
|
|
/**
|
|
The light depth map texture
|
|
*/
|
|
uniform sampler2D shadowMap;
|
|
|
|
|
|
|
|
uint findCluster(vec3 viewspaceFragPos, float zNear, float zFar);
|
|
vec3 CalcPointLight(PointLight pointLight, vec3 normal, vec3 fragPos, vec3 viewDir);
|
|
float calcLightIntensityTotal(vec3 normal);
|
|
float ShadowCalculation(vec4 fragPosLightSpace, vec3 lightDir, vec3 normal);
|
|
|
|
|
|
|
|
float calcLightIntensityAmbient(){
|
|
//calculate average of ambient light
|
|
float avg = (directLight.color.x + directLight.color.y + directLight.color.z)/3.0;
|
|
return avg;
|
|
}
|
|
|
|
//
|
|
float calcLightIntensityDir(vec3 normal){
|
|
vec3 lightDir = normalize(-directLight.direction);
|
|
// diffuse shading
|
|
float diff = max(dot(normal, lightDir), 0.0);
|
|
|
|
return diff;
|
|
}
|
|
|
|
//
|
|
float calcLightIntensityTotal(vec3 normal){
|
|
//ambient intensity
|
|
float ambientLightIntensity = calcLightIntensityAmbient();
|
|
|
|
//get direct intensity
|
|
float directLightIntensity = calcLightIntensityDir(normal);
|
|
|
|
//sum
|
|
float total = ambientLightIntensity + directLightIntensity;
|
|
return total;
|
|
}
|
|
|
|
//
|
|
vec3 getTotalLightColor(vec3 normal){
|
|
//get the direct light color adjusted for intensity
|
|
vec3 diffuseLightColor = directLight.color * calcLightIntensityDir(normal);
|
|
|
|
//sum light colors
|
|
vec3 totalLightColor = diffuseLightColor;
|
|
return totalLightColor;
|
|
}
|
|
|
|
vec3 CalcPointLight(PointLight pointLight, vec3 normal, vec3 fragPos, vec3 viewDir){
|
|
vec3 lightDir = normalize(pointLight.position.xyz - fragPos);
|
|
// diffuse shading
|
|
float diff = max(dot(normal, lightDir), 0.0);
|
|
// specular shading
|
|
// vec3 reflectDir = reflect(-lightDir, normal);
|
|
// float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
|
|
// attenuation
|
|
float distance = length(pointLight.position.xyz - fragPos);
|
|
float attenuation = 1.0 / (pointLight.constant + pointLight.linear * distance + pointLight.quadratic * (distance * distance));
|
|
if(distance > pointLight.radius){
|
|
attenuation = 0;
|
|
}
|
|
// combine results
|
|
vec3 ambient = pointLight.color.xyz;// * vec4(texture(material.diffuse, TexCoord)).xyz;
|
|
vec3 diffuse = pointLight.color.xyz * diff;// * vec4(texture(material.diffuse, TexCoord)).xyz;
|
|
// vec3 specular = pLspecular[i] * spec;// * vec4(texture(material.specular, TexCoord)).xyz;
|
|
ambient = ambient * attenuation;
|
|
diffuse = diffuse * attenuation;
|
|
// specular *= attenuation;
|
|
vec3 specular = vec3(0,0,0);
|
|
|
|
vec3 finalValue = vec3(0);
|
|
if(distance < pointLight.radius){
|
|
finalValue = (ambient + diffuse + specular);
|
|
finalValue = vec3(max(finalValue.x,0),max(finalValue.y,0),max(finalValue.z,0));
|
|
}
|
|
|
|
return finalValue;
|
|
}
|
|
|
|
/**
|
|
Finds the light cluster this fragment belongs to
|
|
*/
|
|
uint findCluster(vec3 viewspaceFragPos, float zNear, float zFar){
|
|
uint zTile = uint((log(abs(viewspaceFragPos.z) / zNear) * gridSize.z) / log(zFar / zNear));
|
|
vec2 tileSize = screenDimensions / gridSize.xy;
|
|
uvec3 tile = uvec3(gl_FragCoord.xy / tileSize, zTile);
|
|
return tile.x + (tile.y * gridSize.x) + (tile.z * gridSize.x * gridSize.y);
|
|
}
|
|
|
|
|
|
float ShadowCalculation(vec4 fragPosLightSpace, vec3 lightDir, vec3 normal){
|
|
|
|
// perform perspective divide
|
|
vec3 projCoords = fragPosLightSpace.xyz / fragPosLightSpace.w;
|
|
|
|
//transform to NDC
|
|
projCoords = projCoords * 0.5 + 0.5;
|
|
|
|
//get closest depth from light's POV
|
|
float closestDepth = texture(shadowMap, projCoords.xy).r;
|
|
|
|
//get depth of current fragment
|
|
float currentDepth = projCoords.z;
|
|
|
|
//calculate bias
|
|
float bias = max(0.05 * (1.0 - dot(normal, lightDir)), 0.005);
|
|
|
|
//calculate shadow value
|
|
float shadow = currentDepth - bias > closestDepth ? 1.0 : 0.0;
|
|
|
|
if(projCoords.z > 1.0){
|
|
shadow = 0.0;
|
|
}
|
|
|
|
//calculate dot product, if it is >0 we know they're parallel-ish therefore should disregard the shadow mapping
|
|
//ie the fragment is already facing away from the light source
|
|
float dotprod = dot(normalize(lightDir),normalize(normal));
|
|
|
|
if(dotprod > 0.0){
|
|
shadow = 0.0;
|
|
}
|
|
|
|
// shadow = currentDepth;
|
|
|
|
return clamp(1.0 - shadow, 0.0, 0.7);
|
|
} |