Hoisted step funcs working with single chunk

This commit is contained in:
unknown 2023-07-23 18:16:26 -04:00
parent e31b3643ba
commit 327c52898d
5 changed files with 948 additions and 167 deletions

View File

@ -66,7 +66,7 @@ gcc $COMPILE_FLAGS -I"$BASE_INCLUDE_DIR" -I"$OS_INCLUDE_DIR" $INPUT_FILES -o $OU
#compile shared object file
OUTPUT_FILE="libfluidsim$LIB_ENDING"
COMPILE_FLAGS="-shared"
INPUT_FILES="fluidsim.o densitystep.o velocitystep.o chunkmask.o"
INPUT_FILES="densitystep.o velocitystep.o chunkmask.o"
gcc $COMPILE_FLAGS $INPUT_FILES -o $OUTPUT_FILE
#move to resources

View File

@ -6,24 +6,28 @@
#include "includes/utilities.h"
#include "includes/chunkmask.h"
void advectDensity(JNIEnv * env, uint32_t chunk_mask, int N, int b, jobjectArray jrd, float * d0, float * u, float * v, float * w, float dt);
/*
* Class: electrosphere_FluidSim
* Method: addDensity
* Signature: (II[Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;F)V
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_addDensity
(JNIEnv *, jobject, jint, jint, jobjectArray, jobject, jfloat){
}
/*
* Class: electrosphere_FluidSim
* Method: setupDiffuseDensity
* Signature: (II[Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_setupDiffuseDensity
(JNIEnv *, jobject, jint, jint, jobjectArray, jobject, jobjectArray, jobjectArray, jobjectArray, jfloat, jfloat, jfloat){
(JNIEnv * env,
jobject this,
jint N,
jint chunk_mask,
jobjectArray jrx,
jobject x0,
jfloat dt){
int i;
int size=N*N*N;
float * x = GET_ARR(env,jrx,CENTER_LOC);
float * s = (*env)->GetDirectBufferAddress(env,x0);
for(i=0; i<size; i++){
x[i] += dt*s[i];
}
}
/*
@ -32,8 +36,52 @@ JNIEXPORT void JNICALL Java_electrosphere_FluidSim_setupDiffuseDensity
* Signature: (II[Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_solveDiffuseDensity
(JNIEnv *, jobject, jint, jint, jobjectArray, jobject, jobjectArray, jobjectArray, jobjectArray, jfloat, jfloat, jfloat){
(JNIEnv * env,
jobject this,
jint N,
jint chunk_mask,
jobjectArray jrx,
jobject jrx0,
jobjectArray jru,
jobjectArray jrv,
jobjectArray jrw,
jfloat DIFFUSION_CONST,
jfloat VISCOSITY_CONST,
jfloat dt){
float a=dt*DIFFUSION_CONST*N*N*N;
float c=1+6*a;
int i, j, k, l, m;
float * x = GET_ARR(env,jrx,CENTER_LOC);
float * x0 = (*env)->GetDirectBufferAddress(env,jrx0);
__m256 aScalar = _mm256_set1_ps(a);
__m256 cScalar = _mm256_set1_ps(c);
//transform u direction
for(k=1; k<N-1; k++){
for(j=1; j<N-1; j++){
int n = 0;
//solve as much as possible vectorized
for(i = 1; i < N-1; i=i+8){
__m256 vector = _mm256_loadu_ps(&x[IX(i-1,j,k)]);
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&x[IX(i+1,j,k)]));
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&x[IX(i,j-1,k)]));
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&x[IX(i,j+1,k)]));
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&x[IX(i,j,k-1)]));
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&x[IX(i,j,k+1)]));
vector = _mm256_mul_ps(vector,aScalar);
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&x0[IX(i,j,k)]));
vector = _mm256_div_ps(vector,cScalar);
_mm256_storeu_ps(&x[IX(i,j,k)],vector);
}
//If there is any leftover, perform manual solving
if(i>N-1){
for(i=i-8; i < N-1; i++){
x[IX(i,j,k)] = (x0[IX(i,j,k)] + a*(x[IX(i-1,j,k)]+x[IX(i+1,j,k)]+x[IX(i,j-1,k)]+x[IX(i,j+1,k)]+x[IX(i,j,k-1)]+x[IX(i,j,k+1)]))/c;
}
}
}
}
}
/*
@ -42,6 +90,139 @@ JNIEXPORT void JNICALL Java_electrosphere_FluidSim_solveDiffuseDensity
* Signature: (II[Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_advectDensity
(JNIEnv *, jobject, jint, jint, jobjectArray, jobject, jobjectArray, jobjectArray, jobjectArray, jfloat, jfloat, jfloat){
(JNIEnv * env,
jobject this,
jint N,
jint chunk_mask,
jobjectArray jrx,
jobject jrx0,
jobjectArray jru,
jobjectArray jrv,
jobjectArray jrw,
jfloat DIFFUSION_CONST,
jfloat VISCOSITY_CONST,
jfloat dt){
float * x0 = (*env)->GetDirectBufferAddress(env,jrx0);
advectDensity(env,chunk_mask,N,3,jrx,x0,GET_ARR(env,jru,CENTER_LOC),GET_ARR(env,jrv,CENTER_LOC),GET_ARR(env,jrw,CENTER_LOC),dt);
}
void advectDensity(JNIEnv * env, uint32_t chunk_mask, int N, int b, jobjectArray jrd, float * d0, float * u, float * v, float * w, float dt){
int i, j, k, i0, j0, k0, i1, j1, k1;
int m,n,o;
float x, y, z, s0, t0, s1, t1, u1, u0, dtx,dty,dtz;
dtx=dty=dtz=dt*N;
float * d = GET_ARR(env,jrd,CENTER_LOC);
float * sampleArr = d0;
for(k=1; k<N-1; k++){
for(j=1; j<N-1; j++){
for(i=1; i<N-1; i++){
//calculate location to pull from
x = i-dtx*u[IX(i,j,k)];
y = j-dty*v[IX(i,j,k)];
z = k-dtz*w[IX(i,j,k)];
m = n = o = 1;
if(x < 1){ m -= 1; }
if(x >= N-1){ m += 1; }
if(y < 1){ n -= 1; }
if(y >= N-1){ n += 1; }
if(z < 1){ o -= 1; }
if(z >= N-1){ o += 1; }
//If the out of bounds coordinate is in bounds for a neighbor chunk, use that chunk as source instead
// if(CK(m,n,o) != CENTER_LOC){
// printf("Looking in border chunk\n");
// }
// if(x > 16){
// printf("%f %d %d %d\n",m,n,o);
// }
// if(CK(m,n,o) != CENTER_LOC && ARR_EXISTS(chunk_mask,m,n,o)){
// // printf("Hit other chunk\n");
// sampleArr = GET_ARR(env,jrd,CK(m,n,o));
// x = x + CHUNK_NORMALIZE_U[CK(m,n,o)] * N;
// y = y + CHUNK_NORMALIZE_V[CK(m,n,o)] * N;
// z = z + CHUNK_NORMALIZE_W[CK(m,n,o)] * N;
// }
//clamp location within chunk
if (x<0.5f) x=0.5f;
if (x>N+0.5f) x=N+0.5f;
if (y<0.5f) y=0.5f;
if (y>N+0.5f) y=N+0.5f;
if (z<0.5f) z=0.5f;
if (z>N+0.5f) z=N+0.5f;
//get actual indices
i0=(int)x;
i1=i0+1;
j0=(int)y;
j1=j0+1;
k0=(int)z;
k1=k0+1;
//calculate percentage of each index
s1 = x-i0;
s0 = 1-s1;
t1 = y-j0;
t0 = 1-t1;
u1 = z-k0;
u0 = 1-u1;
if(i0 >= N){
i0 = N - 1;
}
// if(i0 < 0){
// i0 = 0;
// }
if(j0 >= N){
j0 = N - 1;
}
// if(j0 < 0){
// j0 = 0;
// }
if(k0 >= N){
k0 = N - 1;
}
// if(k0 < 0){
// k0 = 0;
// }
if(i1 >= N){
i1 = N - 1;
}
// if(i1 < 0){
// i1 = 0;
// }
if(j1 >= N){
j1 = N - 1;
}
// if(j1 < 0){
// j1 = 0;
// }
if(k1 >= N){
k1 = N - 1;
}
// if(k1 < 0){
// k1 = 0;
// }
d[IX(i,j,k)] =
s0*(
t0*u0*sampleArr[IX(i0,j0,k0)]+
t1*u0*sampleArr[IX(i0,j1,k0)]+
t0*u1*sampleArr[IX(i0,j0,k1)]+
t1*u1*sampleArr[IX(i0,j1,k1)]
)+
s1*(
t0*u0*sampleArr[IX(i1,j0,k0)]+
t1*u0*sampleArr[IX(i1,j1,k0)]+
t0*u1*sampleArr[IX(i1,j0,k1)]+
t1*u1*sampleArr[IX(i1,j1,k1)]
);
}
}
}
}

View File

@ -20,10 +20,10 @@ extern "C" {
/*
* Class: electrosphere_FluidSim
* Method: simulate
* Signature: (II[Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;FFF)V
* Signature: (II[Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_simulate
(JNIEnv *, jobject, jint, jint, jobjectArray, jobject, jobjectArray, jobjectArray, jobjectArray, jobject, jobject, jobject, jfloat, jfloat, jfloat);
(JNIEnv *, jobject, jint, jint, jobjectArray, jobject, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jfloat, jfloat, jfloat);
/*
* Class: electrosphere_FluidSim
@ -36,58 +36,50 @@ JNIEXPORT jint JNICALL Java_electrosphere_FluidSim_calculateChunkMask
/*
* Class: electrosphere_FluidSim
* Method: addSourceToVectors
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;FFF)V
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_addSourceToVectors
(JNIEnv *, jobject, jint, jint, jobjectArray, jobjectArray, jobjectArray, jobject, jobject, jobject, jfloat, jfloat, jfloat);
/*
* Class: electrosphere_FluidSim
* Method: setupVectorDiffuse
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;FFF)V
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_setupVectorDiffuse
(JNIEnv *, jobject, jint, jint, jobjectArray, jobjectArray, jobjectArray, jobject, jobject, jobject, jfloat, jfloat, jfloat);
(JNIEnv *, jobject, jint, jint, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jfloat, jfloat, jfloat);
/*
* Class: electrosphere_FluidSim
* Method: solveVectorDiffuse
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;FFF)V
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_solveVectorDiffuse
(JNIEnv *, jobject, jint, jint, jobjectArray, jobjectArray, jobjectArray, jobject, jobject, jobject, jfloat, jfloat, jfloat);
(JNIEnv *, jobject, jint, jint, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jfloat, jfloat, jfloat);
/*
* Class: electrosphere_FluidSim
* Method: setupProjection
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;FFF)V
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_setupProjection
(JNIEnv *, jobject, jint, jint, jobjectArray, jobjectArray, jobjectArray, jobject, jobject, jobject, jfloat, jfloat, jfloat);
(JNIEnv *, jobject, jint, jint, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jfloat, jfloat, jfloat);
/*
* Class: electrosphere_FluidSim
* Method: solveProjection
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;FFF)V
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_solveProjection
(JNIEnv *, jobject, jint, jint, jobjectArray, jobjectArray, jobjectArray, jobject, jobject, jobject, jfloat, jfloat, jfloat);
(JNIEnv *, jobject, jint, jint, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jfloat, jfloat, jfloat);
/*
* Class: electrosphere_FluidSim
* Method: finalizeProjection
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;FFF)V
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_finalizeProjection
(JNIEnv *, jobject, jint, jint, jobjectArray, jobjectArray, jobjectArray, jobject, jobject, jobject, jfloat, jfloat, jfloat);
(JNIEnv *, jobject, jint, jint, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jfloat, jfloat, jfloat);
/*
* Class: electrosphere_FluidSim
* Method: advectVectors
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;FFF)V
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_advectVectors
(JNIEnv *, jobject, jint, jint, jobjectArray, jobjectArray, jobjectArray, jobject, jobject, jobject, jfloat, jfloat, jfloat);
(JNIEnv *, jobject, jint, jint, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jfloat, jfloat, jfloat);
/*
* Class: electrosphere_FluidSim
@ -97,14 +89,6 @@ JNIEXPORT void JNICALL Java_electrosphere_FluidSim_advectVectors
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_addDensity
(JNIEnv *, jobject, jint, jint, jobjectArray, jobject, jfloat);
/*
* Class: electrosphere_FluidSim
* Method: setupDiffuseDensity
* Signature: (II[Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_setupDiffuseDensity
(JNIEnv *, jobject, jint, jint, jobjectArray, jobject, jobjectArray, jobjectArray, jobjectArray, jfloat, jfloat, jfloat);
/*
* Class: electrosphere_FluidSim
* Method: solveDiffuseDensity
@ -121,6 +105,14 @@ JNIEXPORT void JNICALL Java_electrosphere_FluidSim_solveDiffuseDensity
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_advectDensity
(JNIEnv *, jobject, jint, jint, jobjectArray, jobject, jobjectArray, jobjectArray, jobjectArray, jfloat, jfloat, jfloat);
/*
* Class: electrosphere_FluidSim
* Method: setBoundsToNeighbors
* Signature: (III[Ljava/nio/ByteBuffer;)V
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_setBoundsToNeighbors
(JNIEnv *, jobject, jint, jint, jint, jobjectArray);
#ifdef __cplusplus
}
#endif

View File

@ -7,73 +7,619 @@
#include "includes/chunkmask.h"
#define BOUND_NO_DIR 0
#define BOUND_DIR_U 1
#define BOUND_DIR_V 2
#define BOUND_DIR_W 3
#define SET_BOUND_IGNORE 0
#define SET_BOUND_USE_NEIGHBOR 1
void add_source(int N, float * x, float * s, float dt);
void advect(JNIEnv * env, uint32_t chunk_mask, int N, int b, jobjectArray jrd, float * d0, float * u, float * v, float * w, float dt);
/*
* Class: electrosphere_FluidSim
* Method: addSourceToVectors
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;FFF)V
* Adds force to all vectors
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_addSourceToVectors
(JNIEnv *, jobject, jint, jint, jobjectArray, jobjectArray, jobjectArray, jobject, jobject, jobject, jfloat, jfloat, jfloat){
(JNIEnv * env,
jobject this,
jint N,
jint chunk_mask,
jobjectArray jru,
jobjectArray jrv,
jobjectArray jrw,
jobjectArray jru0,
jobjectArray jrv0,
jobjectArray jrw0,
jfloat DIFFUSION_CONST,
jfloat VISCOSITY_CONST,
jfloat dt){
add_source(N,GET_ARR(env,jru,CENTER_LOC),GET_ARR(env,jru0,CENTER_LOC),dt);
add_source(N,GET_ARR(env,jrv,CENTER_LOC),GET_ARR(env,jrv0,CENTER_LOC),dt);
add_source(N,GET_ARR(env,jrw,CENTER_LOC),GET_ARR(env,jrw0,CENTER_LOC),dt);
}
void add_source(int N, float * x, float * s, float dt){
int i;
int size=N*N*N;
for(i=0; i<size; i++){
if(s[i] > 0){
printf("%f\n",s[i]);
}
x[i] += dt*s[i];
}
}
/*
* Class: electrosphere_FluidSim
* Method: setupVectorDiffuse
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;FFF)V
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_setupVectorDiffuse
(JNIEnv *, jobject, jint, jint, jobjectArray, jobjectArray, jobjectArray, jobject, jobject, jobject, jfloat, jfloat, jfloat){
}
/*
* Class: electrosphere_FluidSim
* Method: solveVectorDiffuse
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;FFF)V
* Solves vector diffusion along all axis
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_solveVectorDiffuse
(JNIEnv *, jobject, jint, jint, jobjectArray, jobjectArray, jobjectArray, jobject, jobject, jobject, jfloat, jfloat, jfloat){
(JNIEnv * env,
jobject this,
jint N,
jint chunk_mask,
jobjectArray jru,
jobjectArray jrv,
jobjectArray jrw,
jobjectArray jru0,
jobjectArray jrv0,
jobjectArray jrw0,
jfloat DIFFUSION_CONST,
jfloat VISCOSITY_CONST,
jfloat dt){
float a=dt*DIFFUSION_CONST*N*N*N;
float c=1+6*a;
int i, j, k, l, m;
float * u = GET_ARR(env,jru,CENTER_LOC);
float * v = GET_ARR(env,jrv,CENTER_LOC);
float * w = GET_ARR(env,jrw,CENTER_LOC);
float * u0 = GET_ARR(env,jru0,CENTER_LOC);
float * v0 = GET_ARR(env,jrv0,CENTER_LOC);
float * w0 = GET_ARR(env,jrw0,CENTER_LOC);
__m256 aScalar = _mm256_set1_ps(a);
__m256 cScalar = _mm256_set1_ps(c);
//transform u direction
for(k=1; k<N-1; k++){
for(j=1; j<N-1; j++){
int n = 0;
//solve as much as possible vectorized
for(i = 1; i < N-1; i=i+8){
__m256 vector = _mm256_loadu_ps(&u[IX(i-1,j,k)]);
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&u[IX(i+1,j,k)]));
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&u[IX(i,j-1,k)]));
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&u[IX(i,j+1,k)]));
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&u[IX(i,j,k-1)]));
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&u[IX(i,j,k+1)]));
vector = _mm256_mul_ps(vector,aScalar);
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&u0[IX(i,j,k)]));
vector = _mm256_div_ps(vector,cScalar);
_mm256_storeu_ps(&u[IX(i,j,k)],vector);
}
//If there is any leftover, perform manual solving
if(i>N-1){
for(i=i-8; i < N-1; i++){
u[IX(i,j,k)] = (u0[IX(i,j,k)] + a*(u[IX(i-1,j,k)]+u[IX(i+1,j,k)]+u[IX(i,j-1,k)]+u[IX(i,j+1,k)]+u[IX(i,j,k-1)]+u[IX(i,j,k+1)]))/c;
}
}
}
}
//transform v direction
for(k=1; k<N-1; k++){
for(j=1; j<N-1; j++){
int n = 0;
//solve as much as possible vectorized
for(i = 1; i < N-1; i=i+8){
__m256 vector = _mm256_loadu_ps(&v[IX(i-1,j,k)]);
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&v[IX(i+1,j,k)]));
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&v[IX(i,j-1,k)]));
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&v[IX(i,j+1,k)]));
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&v[IX(i,j,k-1)]));
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&v[IX(i,j,k+1)]));
vector = _mm256_mul_ps(vector,aScalar);
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&v0[IX(i,j,k)]));
vector = _mm256_div_ps(vector,cScalar);
_mm256_storeu_ps(&v[IX(i,j,k)],vector);
}
//If there is any leftover, perform manual solving
if(i>N-1){
for(i=i-8; i < N-1; i++){
v[IX(i,j,k)] = (v0[IX(i,j,k)] + a*(v[IX(i-1,j,k)]+v[IX(i+1,j,k)]+v[IX(i,j-1,k)]+v[IX(i,j+1,k)]+v[IX(i,j,k-1)]+v[IX(i,j,k+1)]))/c;
}
}
}
}
//transform w direction
for(k=1; k<N-1; k++){
for(j=1; j<N-1; j++){
int n = 0;
//solve as much as possible vectorized
for(i = 1; i < N-1; i=i+8){
__m256 vector = _mm256_loadu_ps(&w[IX(i-1,j,k)]);
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&w[IX(i+1,j,k)]));
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&w[IX(i,j-1,k)]));
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&w[IX(i,j+1,k)]));
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&w[IX(i,j,k-1)]));
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&w[IX(i,j,k+1)]));
vector = _mm256_mul_ps(vector,aScalar);
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&w0[IX(i,j,k)]));
vector = _mm256_div_ps(vector,cScalar);
_mm256_storeu_ps(&w[IX(i,j,k)],vector);
}
//If there is any leftover, perform manual solving
if(i>N-1){
for(i=i-8; i < N-1; i++){
w[IX(i,j,k)] = (w0[IX(i,j,k)] + a*(w[IX(i-1,j,k)]+w[IX(i+1,j,k)]+w[IX(i,j-1,k)]+w[IX(i,j+1,k)]+w[IX(i,j,k-1)]+w[IX(i,j,k+1)]))/c;
}
}
}
}
}
/*
* Class: electrosphere_FluidSim
* Method: setupProjection
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;FFF)V
* Sets up a projection system of equations
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_setupProjection
(JNIEnv *, jobject, jint, jint, jobjectArray, jobjectArray, jobjectArray, jobject, jobject, jobject, jfloat, jfloat, jfloat){
(JNIEnv * env,
jobject this,
jint N,
jint chunk_mask,
jobjectArray jru,
jobjectArray jrv,
jobjectArray jrw,
jobjectArray jru0,
jobjectArray jrv0,
jobjectArray jrw0,
jfloat DIFFUSION_CONST,
jfloat VISCOSITY_CONST,
jfloat dt){
int i, j, k;
__m256 nVector = _mm256_set1_ps(N);
__m256 constScalar = _mm256_set1_ps(-1.0/3.0);
__m256 zeroVec = _mm256_set1_ps(0);
__m256 vector, vector2, vector3;
float * u = GET_ARR(env,jru,CENTER_LOC);
float * v = GET_ARR(env,jrv,CENTER_LOC);
float * w = GET_ARR(env,jrw,CENTER_LOC);
float * p = GET_ARR(env,jru0,CENTER_LOC);
float * div = GET_ARR(env,jrv0,CENTER_LOC);
for(k=1; k<N-1; k++){
for(j=1; j<N-1; j++){
i = 1;
//
//lower
//
//first part
vector = _mm256_loadu_ps(&u[IX(i+1,j,k)]);
vector = _mm256_sub_ps(vector,_mm256_loadu_ps(&u[IX(i-1,j,k)]));
vector = _mm256_div_ps(vector,nVector);
//second part
vector2 = _mm256_loadu_ps(&v[IX(i,j+1,k)]);
vector2 = _mm256_sub_ps(vector2,_mm256_loadu_ps(&v[IX(i,j-1,k)]));
vector2 = _mm256_div_ps(vector2,nVector);
//third part
vector3 = _mm256_loadu_ps(&w[IX(i,j,k+1)]);
vector3 = _mm256_sub_ps(vector3,_mm256_loadu_ps(&w[IX(i,j,k-1)]));
vector3 = _mm256_div_ps(vector3,nVector);
//multiply and finalize
vector = _mm256_add_ps(vector,_mm256_add_ps(vector2,vector3));
vector = _mm256_mul_ps(vector,constScalar);
//store
_mm256_storeu_ps(&div[IX(i,j,k)],vector);
_mm256_storeu_ps(&p[IX(i,j,k)],zeroVec);
i = 9;
//
//upper
//
//first part
vector = _mm256_loadu_ps(&u[IX(i+1,j,k)]);
vector = _mm256_sub_ps(vector,_mm256_loadu_ps(&u[IX(i-1,j,k)]));
vector = _mm256_div_ps(vector,nVector);
//second part
vector2 = _mm256_loadu_ps(&v[IX(i,j+1,k)]);
vector2 = _mm256_sub_ps(vector2,_mm256_loadu_ps(&v[IX(i,j-1,k)]));
vector2 = _mm256_div_ps(vector2,nVector);
//third part
vector3 = _mm256_loadu_ps(&w[IX(i,j,k+1)]);
vector3 = _mm256_sub_ps(vector3,_mm256_loadu_ps(&w[IX(i,j,k-1)]));
vector3 = _mm256_div_ps(vector3,nVector);
//multiply and finalize
vector = _mm256_add_ps(vector,_mm256_add_ps(vector2,vector3));
vector = _mm256_mul_ps(vector,constScalar);
//store
_mm256_storeu_ps(&div[IX(i,j,k)],vector);
_mm256_storeu_ps(&p[IX(i,j,k)],zeroVec);
}
}
// set_bnd(env, chunk_mask, N, BOUND_NO_DIR, div);
// set_bnd(env, chunk_mask, N, BOUND_NO_DIR, p);
}
/*
* Class: electrosphere_FluidSim
* Method: solveProjection
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;FFF)V
* Solves a projection system of equations
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_solveProjection
(JNIEnv *, jobject, jint, jint, jobjectArray, jobjectArray, jobjectArray, jobject, jobject, jobject, jfloat, jfloat, jfloat){
(JNIEnv * env,
jobject this,
jint N,
jint chunk_mask,
jobjectArray jru,
jobjectArray jrv,
jobjectArray jrw,
jobjectArray jru0,
jobjectArray jrv0,
jobjectArray jrw0,
jfloat DIFFUSION_CONST,
jfloat VISCOSITY_CONST,
jfloat dt){
int a = 1;
int c = 6;
int i, j, k, l, m;
__m256 aScalar = _mm256_set1_ps(a);
__m256 cScalar = _mm256_set1_ps(c);
float * x = GET_ARR(env,jru0,CENTER_LOC);
float * x0 = GET_ARR(env,jrv0,CENTER_LOC);
// update for each cell
for(k=1; k<N-1; k++){
for(j=1; j<N-1; j++){
int n = 0;
//solve as much as possible vectorized
for(i = 1; i < N-1; i=i+8){
__m256 vector = _mm256_loadu_ps(&x[IX(i-1,j,k)]);
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&x[IX(i+1,j,k)]));
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&x[IX(i,j-1,k)]));
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&x[IX(i,j+1,k)]));
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&x[IX(i,j,k-1)]));
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&x[IX(i,j,k+1)]));
vector = _mm256_mul_ps(vector,aScalar);
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&x0[IX(i,j,k)]));
vector = _mm256_div_ps(vector,cScalar);
_mm256_storeu_ps(&x[IX(i,j,k)],vector);
}
//If there is any leftover, perform manual solving
if(i>N-1){
for(i=i-8; i < N-1; i++){
x[IX(i,j,k)] = (x0[IX(i,j,k)] + a*(x[IX(i-1,j,k)]+x[IX(i+1,j,k)]+x[IX(i,j-1,k)]+x[IX(i,j+1,k)]+x[IX(i,j,k-1)]+x[IX(i,j,k+1)]))/c;
}
}
}
}
// set_bnd(env, chunk_mask, SET_BOUND_USE_NEIGHBOR, N, b, d, jrd);
// set_bnd(env, chunk_mask, N, BOUND_NO_DIR, x);
}
/*
* Class: electrosphere_FluidSim
* Method: finalizeProjection
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;FFF)V
* Finalizes a projection (subtract curl, set bounds, etc)
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_finalizeProjection
(JNIEnv *, jobject, jint, jint, jobjectArray, jobjectArray, jobjectArray, jobject, jobject, jobject, jfloat, jfloat, jfloat){
(JNIEnv * env,
jobject this,
jint N,
jint chunk_mask,
jobjectArray jru,
jobjectArray jrv,
jobjectArray jrw,
jobjectArray jru0,
jobjectArray jrv0,
jobjectArray jrw0,
jfloat DIFFUSION_CONST,
jfloat VISCOSITY_CONST,
jfloat dt){
int i, j, k;
__m256 nVector = _mm256_set1_ps(N);
__m256 constScalar = _mm256_set1_ps(0.5f*N);
__m256 zeroVec = _mm256_set1_ps(0);
__m256 vector, vector2, vector3;
float * u = GET_ARR(env,jru,CENTER_LOC);
float * v = GET_ARR(env,jrv,CENTER_LOC);
float * w = GET_ARR(env,jrw,CENTER_LOC);
float * p = GET_ARR(env,jru0,CENTER_LOC);
float * div = GET_ARR(env,jrv0,CENTER_LOC);
for ( k=1 ; k<N-1 ; k++ ) {
for ( j=1 ; j<N-1 ; j++ ) {
//
//v
//
//lower
vector = _mm256_loadu_ps(&p[IX(1+1,j,k)]);
vector2 = _mm256_loadu_ps(&p[IX(1-1,j,k)]);
vector = _mm256_sub_ps(vector,vector2);
vector = _mm256_mul_ps(vector,constScalar);
vector = _mm256_sub_ps(_mm256_loadu_ps(&u[IX(1,j,k)]),vector);
_mm256_storeu_ps(&u[IX(1,j,k)],vector);
//upper
vector = _mm256_loadu_ps(&p[IX(9+1,j,k)]);
vector2 = _mm256_loadu_ps(&p[IX(9-1,j,k)]);
vector = _mm256_sub_ps(vector,vector2);
vector = _mm256_mul_ps(vector,constScalar);
vector = _mm256_sub_ps(_mm256_loadu_ps(&u[IX(9,j,k)]),vector);
_mm256_storeu_ps(&u[IX(9,j,k)],vector);
//
//v
//
//lower
vector = _mm256_loadu_ps(&p[IX(1,j+1,k)]);
vector2 = _mm256_loadu_ps(&p[IX(1,j-1,k)]);
vector = _mm256_sub_ps(vector,vector2);
vector = _mm256_mul_ps(vector,constScalar);
vector = _mm256_sub_ps(_mm256_loadu_ps(&v[IX(1,j,k)]),vector);
_mm256_storeu_ps(&v[IX(1,j,k)],vector);
//upper
vector = _mm256_loadu_ps(&p[IX(9,j+1,k)]);
vector2 = _mm256_loadu_ps(&p[IX(9,j-1,k)]);
vector = _mm256_sub_ps(vector,vector2);
vector = _mm256_mul_ps(vector,constScalar);
vector = _mm256_sub_ps(_mm256_loadu_ps(&v[IX(9,j,k)]),vector);
_mm256_storeu_ps(&v[IX(9,j,k)],vector);
//
//w
//
//lower
vector = _mm256_loadu_ps(&p[IX(1,j,k+1)]);
vector2 = _mm256_loadu_ps(&p[IX(1,j,k-1)]);
vector = _mm256_sub_ps(vector,vector2);
vector = _mm256_mul_ps(vector,constScalar);
vector = _mm256_sub_ps(_mm256_loadu_ps(&w[IX(1,j,k)]),vector);
_mm256_storeu_ps(&w[IX(1,j,k)],vector);
//upper
vector = _mm256_loadu_ps(&p[IX(9,j,k+1)]);
vector2 = _mm256_loadu_ps(&p[IX(9,j,k-1)]);
vector = _mm256_sub_ps(vector,vector2);
vector = _mm256_mul_ps(vector,constScalar);
vector = _mm256_sub_ps(_mm256_loadu_ps(&w[IX(9,j,k)]),vector);
_mm256_storeu_ps(&w[IX(9,j,k)],vector);
}
}
// set_bnd_old(env, chunk_mask, N, 1, u);
// set_bnd_old(env, chunk_mask, N, 2, v);
// set_bnd_old(env, chunk_mask, N, 3, w);
}
/*
* Class: electrosphere_FluidSim
* Method: advectVectors
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;FFF)V
* Advects u, v, and w
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_advectVectors
(JNIEnv *, jobject, jint, jint, jobjectArray, jobjectArray, jobjectArray, jobject, jobject, jobject, jfloat, jfloat, jfloat){
(JNIEnv * env,
jobject this,
jint N,
jint chunk_mask,
jobjectArray jru,
jobjectArray jrv,
jobjectArray jrw,
jobjectArray jru0,
jobjectArray jrv0,
jobjectArray jrw0,
jfloat DIFFUSION_CONST,
jfloat VISCOSITY_CONST,
jfloat dt){
advect(env,chunk_mask,N,1,jru,GET_ARR(env,jru0,CENTER_LOC),GET_ARR(env,jru0,CENTER_LOC),GET_ARR(env,jrv0,CENTER_LOC),GET_ARR(env,jrw0,CENTER_LOC),dt);
advect(env,chunk_mask,N,2,jrv,GET_ARR(env,jrv0,CENTER_LOC),GET_ARR(env,jru0,CENTER_LOC),GET_ARR(env,jrv0,CENTER_LOC),GET_ARR(env,jrw0,CENTER_LOC),dt);
advect(env,chunk_mask,N,3,jrw,GET_ARR(env,jrw0,CENTER_LOC),GET_ARR(env,jru0,CENTER_LOC),GET_ARR(env,jrv0,CENTER_LOC),GET_ARR(env,jrw0,CENTER_LOC),dt);
}
void advect(JNIEnv * env, uint32_t chunk_mask, int N, int b, jobjectArray jrd, float * d0, float * u, float * v, float * w, float dt){
int i, j, k, i0, j0, k0, i1, j1, k1;
int m,n,o;
float x, y, z, s0, t0, s1, t1, u1, u0, dtx,dty,dtz;
dtx=dty=dtz=dt*N;
float * d = GET_ARR(env,jrd,CENTER_LOC);
float * sampleArr = d0;
for(k=1; k<N-1; k++){
for(j=1; j<N-1; j++){
for(i=1; i<N-1; i++){
//calculate location to pull from
x = i-dtx*u[IX(i,j,k)];
y = j-dty*v[IX(i,j,k)];
z = k-dtz*w[IX(i,j,k)];
m = n = o = 1;
if(x < 1){ m -= 1; }
if(x >= N-1){ m += 1; }
if(y < 1){ n -= 1; }
if(y >= N-1){ n += 1; }
if(z < 1){ o -= 1; }
if(z >= N-1){ o += 1; }
//If the out of bounds coordinate is in bounds for a neighbor chunk, use that chunk as source instead
// if(CK(m,n,o) != CENTER_LOC){
// printf("Looking in border chunk\n");
// }
// if(x > 16){
// printf("%f %d %d %d\n",m,n,o);
// }
// if(CK(m,n,o) != CENTER_LOC && ARR_EXISTS(chunk_mask,m,n,o)){
// // printf("Hit other chunk\n");
// sampleArr = GET_ARR(env,jrd,CK(m,n,o));
// x = x + CHUNK_NORMALIZE_U[CK(m,n,o)] * N;
// y = y + CHUNK_NORMALIZE_V[CK(m,n,o)] * N;
// z = z + CHUNK_NORMALIZE_W[CK(m,n,o)] * N;
// }
//clamp location within chunk
if (x<0.5f) x=0.5f;
if (x>N+0.5f) x=N+0.5f;
if (y<0.5f) y=0.5f;
if (y>N+0.5f) y=N+0.5f;
if (z<0.5f) z=0.5f;
if (z>N+0.5f) z=N+0.5f;
//get actual indices
i0=(int)x;
i1=i0+1;
j0=(int)y;
j1=j0+1;
k0=(int)z;
k1=k0+1;
//calculate percentage of each index
s1 = x-i0;
s0 = 1-s1;
t1 = y-j0;
t0 = 1-t1;
u1 = z-k0;
u0 = 1-u1;
if(i0 >= N){
i0 = N - 1;
}
// if(i0 < 0){
// i0 = 0;
// }
if(j0 >= N){
j0 = N - 1;
}
// if(j0 < 0){
// j0 = 0;
// }
if(k0 >= N){
k0 = N - 1;
}
// if(k0 < 0){
// k0 = 0;
// }
if(i1 >= N){
i1 = N - 1;
}
// if(i1 < 0){
// i1 = 0;
// }
if(j1 >= N){
j1 = N - 1;
}
// if(j1 < 0){
// j1 = 0;
// }
if(k1 >= N){
k1 = N - 1;
}
// if(k1 < 0){
// k1 = 0;
// }
d[IX(i,j,k)] =
s0*(
t0*u0*sampleArr[IX(i0,j0,k0)]+
t1*u0*sampleArr[IX(i0,j1,k0)]+
t0*u1*sampleArr[IX(i0,j0,k1)]+
t1*u1*sampleArr[IX(i0,j1,k1)]
)+
s1*(
t0*u0*sampleArr[IX(i1,j0,k0)]+
t1*u0*sampleArr[IX(i1,j1,k0)]+
t0*u1*sampleArr[IX(i1,j0,k1)]+
t1*u1*sampleArr[IX(i1,j1,k1)]
);
}
}
}
// set_bnd(env, chunk_mask, SET_BOUND_USE_NEIGHBOR, N, b, d, jrd);
}
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_setBoundsToNeighbors
(JNIEnv * env,
jobject this,
jint N,
jint chunk_mask,
jint vector_dir,
jobjectArray neighborArray){
int DIM = N;
float * target = GET_ARR(env,neighborArray,CENTER_LOC);
for(int x=1; x < DIM-1; x++){
for(int y = 1; y < DIM-1; y++){
//((x)+(DIM)*(y) + (DIM)*(DIM)*(z))
target[IX(0,x,y)] = vector_dir==BOUND_DIR_U ? -target[IX(1,x,y)] : target[IX(1,x,y)];
target[IX(DIM-1,x,y)] = vector_dir==BOUND_DIR_U ? -target[IX(DIM-2,x,y)] : target[IX(DIM-2,x,y)];
target[IX(x,0,y)] = vector_dir==BOUND_DIR_V ? -target[IX(x,1,y)] : target[IX(x,1,y)];
target[IX(x,DIM-1,y)] = vector_dir==BOUND_DIR_V ? -target[IX(x,DIM-2,y)] : target[IX(x,DIM-2,y)];
target[IX(x,y,0)] = vector_dir==BOUND_DIR_W ? -target[IX(x,y,1)] : target[IX(x,y,1)];
target[IX(x,y,DIM-1)] = vector_dir==BOUND_DIR_W ? -target[IX(x,y,DIM-2)] : target[IX(x,y,DIM-2)];
}
}
for(int x = 1; x < DIM-1; x++){
target[IX(x,0,0)] = (float)(0.5f * (target[IX(x,1,0)] + target[IX(x,0,1)]));
target[IX(x,DIM-1,0)] = (float)(0.5f * (target[IX(x,DIM-2,0)] + target[IX(x,DIM-1,1)]));
target[IX(x,0,DIM-1)] = (float)(0.5f * (target[IX(x,1,DIM-1)] + target[IX(x,0,DIM-2)]));
target[IX(x,DIM-1,DIM-1)] = (float)(0.5f * (target[IX(x,DIM-2,DIM-1)] + target[IX(x,DIM-1,DIM-2)]));
target[IX(0,x,0)] = (float)(0.5f * (target[IX(1,x,0)] + target[IX(0,x,1)]));
target[IX(DIM-1,x,0)] = (float)(0.5f * (target[IX(DIM-2,x,0)] + target[IX(DIM-1,x,1)]));
target[IX(0,x,DIM-1)] = (float)(0.5f * (target[IX(1,x,DIM-1)] + target[IX(0,x,DIM-2)]));
target[IX(DIM-1,x,DIM-1)] = (float)(0.5f * (target[IX(DIM-2,x,DIM-1)] + target[IX(DIM-1,x,DIM-2)]));
target[IX(0,0,x)] = (float)(0.5f * (target[IX(1,0,x)] + target[IX(0,1,x)]));
target[IX(DIM-1,0,x)] = (float)(0.5f * (target[IX(DIM-2,0,x)] + target[IX(DIM-1,1,x)]));
target[IX(0,DIM-1,x)] = (float)(0.5f * (target[IX(1,DIM-1,x)] + target[IX(0,DIM-2,x)]));
target[IX(DIM-1,DIM-1,x)] = (float)(0.5f * (target[IX(DIM-2,DIM-1,x)] + target[IX(DIM-1,DIM-2,x)]));
}
target[IX(0,0,0)] = (float)((target[IX(1,0,0)]+target[IX(0,1,0)]+target[IX(0,0,1)])/3.0);
target[IX(DIM-1,0,0)] = (float)((target[IX(DIM-2,0,0)]+target[IX(DIM-1,1,0)]+target[IX(DIM-1,0,1)])/3.0);
target[IX(0,DIM-1,0)] = (float)((target[IX(1,DIM-1,0)]+target[IX(0,DIM-2,0)]+target[IX(0,DIM-1,1)])/3.0);
target[IX(0,0,DIM-1)] = (float)((target[IX(0,0,DIM-2)]+target[IX(1,0,DIM-1)]+target[IX(0,1,DIM-1)])/3.0);
target[IX(DIM-1,DIM-1,0)] = (float)((target[IX(DIM-2,DIM-1,0)]+target[IX(DIM-1,DIM-2,0)]+target[IX(DIM-1,DIM-1,1)])/3.0);
target[IX(0,DIM-1,DIM-1)] = (float)((target[IX(1,DIM-1,DIM-1)]+target[IX(0,DIM-2,DIM-1)]+target[IX(0,DIM-1,DIM-2)])/3.0);
target[IX(DIM-1,0,DIM-1)] = (float)((target[IX(DIM-1,0,DIM-2)]+target[IX(DIM-2,0,DIM-1)]+target[IX(DIM-1,1,DIM-1)])/3.0);
target[IX(DIM-1,DIM-1,DIM-1)] = (float)((target[IX(DIM-1,DIM-1,DIM-2)]+target[IX(DIM-1,DIM-2,DIM-1)]+target[IX(DIM-1,DIM-1,DIM-2)])/3.0);
}
void set_bnd(JNIEnv * env, uint32_t chunk_mask, int ignore_neighbor, int N, int b, float * target, jobjectArray neighborMap){
int DIM = N;
for(int x=1; x < DIM-1; x++){
for(int y = 1; y < DIM-1; y++){
//((x)+(DIM)*(y) + (DIM)*(DIM)*(z))
target[0 + DIM * x + DIM * DIM * y] = b==1 ? -target[1 + DIM * x + DIM * DIM * y] : target[1 + DIM * x + DIM * DIM * y];
target[IX(DIM-1,x,y)] = b==1 ? -target[IX(DIM-2,x,y)] : target[IX(DIM-2,x,y)];
target[IX(x,0,y)] = b==2 ? -target[IX(x,1,y)] : target[IX(x,1,y)];
target[IX(x,DIM-1,y)] = b==2 ? -target[IX(x,DIM-2,y)] : target[IX(x,DIM-2,y)];
target[IX(x,y,0)] = b==3 ? -target[IX(x,y,1)] : target[IX(x,y,1)];
target[IX(x,y,DIM-1)] = b==3 ? -target[IX(x,y,DIM-2)] : target[IX(x,y,DIM-2)];
}
}
for(int x = 1; x < DIM-1; x++){
target[IX(x,0,0)] = (float)(0.5f * (target[IX(x,1,0)] + target[IX(x,0,1)]));
target[IX(x,DIM-1,0)] = (float)(0.5f * (target[IX(x,DIM-2,0)] + target[IX(x,DIM-1,1)]));
target[IX(x,0,DIM-1)] = (float)(0.5f * (target[IX(x,1,DIM-1)] + target[IX(x,0,DIM-2)]));
target[IX(x,DIM-1,DIM-1)] = (float)(0.5f * (target[IX(x,DIM-2,DIM-1)] + target[IX(x,DIM-1,DIM-2)]));
target[IX(0,x,0)] = (float)(0.5f * (target[IX(1,x,0)] + target[IX(0,x,1)]));
target[IX(DIM-1,x,0)] = (float)(0.5f * (target[IX(DIM-2,x,0)] + target[IX(DIM-1,x,1)]));
target[IX(0,x,DIM-1)] = (float)(0.5f * (target[IX(1,x,DIM-1)] + target[IX(0,x,DIM-2)]));
target[IX(DIM-1,x,DIM-1)] = (float)(0.5f * (target[IX(DIM-2,x,DIM-1)] + target[IX(DIM-1,x,DIM-2)]));
target[IX(0,0,x)] = (float)(0.5f * (target[IX(1,0,x)] + target[IX(0,1,x)]));
target[IX(DIM-1,0,x)] = (float)(0.5f * (target[IX(DIM-2,0,x)] + target[IX(DIM-1,1,x)]));
target[IX(0,DIM-1,x)] = (float)(0.5f * (target[IX(1,DIM-1,x)] + target[IX(0,DIM-2,x)]));
target[IX(DIM-1,DIM-1,x)] = (float)(0.5f * (target[IX(DIM-2,DIM-1,x)] + target[IX(DIM-1,DIM-2,x)]));
}
target[IX(0,0,0)] = (float)((target[IX(1,0,0)]+target[IX(0,1,0)]+target[IX(0,0,1)])/3.0);
target[IX(DIM-1,0,0)] = (float)((target[IX(DIM-2,0,0)]+target[IX(DIM-1,1,0)]+target[IX(DIM-1,0,1)])/3.0);
target[IX(0,DIM-1,0)] = (float)((target[IX(1,DIM-1,0)]+target[IX(0,DIM-2,0)]+target[IX(0,DIM-1,1)])/3.0);
target[IX(0,0,DIM-1)] = (float)((target[IX(0,0,DIM-2)]+target[IX(1,0,DIM-1)]+target[IX(0,1,DIM-1)])/3.0);
target[IX(DIM-1,DIM-1,0)] = (float)((target[IX(DIM-2,DIM-1,0)]+target[IX(DIM-1,DIM-2,0)]+target[IX(DIM-1,DIM-1,1)])/3.0);
target[IX(0,DIM-1,DIM-1)] = (float)((target[IX(1,DIM-1,DIM-1)]+target[IX(0,DIM-2,DIM-1)]+target[IX(0,DIM-1,DIM-2)])/3.0);
target[IX(DIM-1,0,DIM-1)] = (float)((target[IX(DIM-1,0,DIM-2)]+target[IX(DIM-2,0,DIM-1)]+target[IX(DIM-1,1,DIM-1)])/3.0);
target[IX(DIM-1,DIM-1,DIM-1)] = (float)((target[IX(DIM-1,DIM-1,DIM-2)]+target[IX(DIM-1,DIM-2,DIM-1)]+target[IX(DIM-1,DIM-1,DIM-2)])/3.0);
}

View File

@ -50,11 +50,11 @@ public class FluidSim {
//Buffers that contain w vector directions
ByteBuffer[] wVector = new ByteBuffer[27];
//Buffers that contain u vector directions to add to the simulation
ByteBuffer uAdditionVector;
ByteBuffer[] uAdditionVector = new ByteBuffer[27];
//Buffers that contain v vector directions to add to the simulation
ByteBuffer vAdditionVector;
ByteBuffer[] vAdditionVector = new ByteBuffer[27];
//Buffers that contain w vector directions to add to the simulation
ByteBuffer wAdditionVector;
ByteBuffer[] wAdditionVector = new ByteBuffer[27];
//The densities for every voxel for the current frame
float[] densityArrayView = new float[DIM * DIM * DIM];
@ -86,18 +86,18 @@ public class FluidSim {
uVector[13] = ByteBuffer.allocateDirect(DIM * DIM * DIM * 4);
vVector[13] = ByteBuffer.allocateDirect(DIM * DIM * DIM * 4);
wVector[13] = ByteBuffer.allocateDirect(DIM * DIM * DIM * 4);
uAdditionVector = ByteBuffer.allocateDirect(DIM * DIM * DIM * 4);
vAdditionVector = ByteBuffer.allocateDirect(DIM * DIM * DIM * 4);
wAdditionVector = ByteBuffer.allocateDirect(DIM * DIM * DIM * 4);
uAdditionVector[13] = ByteBuffer.allocateDirect(DIM * DIM * DIM * 4);
vAdditionVector[13] = ByteBuffer.allocateDirect(DIM * DIM * DIM * 4);
wAdditionVector[13] = ByteBuffer.allocateDirect(DIM * DIM * DIM * 4);
//order endian-ness
density[13].order(ByteOrder.LITTLE_ENDIAN);
densityAddition.order(ByteOrder.LITTLE_ENDIAN);
uVector[13].order(ByteOrder.LITTLE_ENDIAN);
vVector[13].order(ByteOrder.LITTLE_ENDIAN);
wVector[13].order(ByteOrder.LITTLE_ENDIAN);
uAdditionVector.order(ByteOrder.LITTLE_ENDIAN);
vAdditionVector.order(ByteOrder.LITTLE_ENDIAN);
wAdditionVector.order(ByteOrder.LITTLE_ENDIAN);
uAdditionVector[13].order(ByteOrder.LITTLE_ENDIAN);
vAdditionVector[13].order(ByteOrder.LITTLE_ENDIAN);
wAdditionVector[13].order(ByteOrder.LITTLE_ENDIAN);
//set initial values for chunk
FloatBuffer xf = density[13].asFloatBuffer();
@ -148,23 +148,22 @@ public class FluidSim {
}
}
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
simArray[x][y][z].simulate(step,timestep);
}
}
}
//
//Vector stage
solveChunkMask(simArray);
addVectorSources(simArray, timestep);
swapAllVectorFields(simArray, timestep);
solveVectorDiffusion(simArray, timestep);
// setupProjection(simArray, timestep);
solveProjection(simArray, timestep);
swapAllVectorFields(simArray, timestep);
advectVectorsAcrossBoundaries(simArray, timestep);
// setupProjection(simArray, timestep);
solveProjection(simArray, timestep);
//
//Density stage
addDensity(simArray, timestep);
diffuseDensity(simArray, timestep);
advectDensity(simArray, timestep);
@ -223,17 +222,12 @@ public class FluidSim {
// add_source(N, v, v0, dt);
// add_source(N, w, w0, dt);
simArray[x][y][z].addSourceToVectorsWrapper(timestep);
//swap
//u <=> u0 etc for u, v, and w
simArray[x][y][z].swapVectorFields();
//setup diffuse for all 3 vectors
simArray[x][y][z].setupVectorDiffuseWrapper(timestep);
}
}
}
//swap
//u <=> u0 etc for u, v, and w
}
private static void solveVectorDiffusion(FluidSim[][][] simArray, float timestep){
@ -249,17 +243,13 @@ public class FluidSim {
}
}
}
}
}
private static void setupProjection(FluidSim[][][] simArray, float timestep){
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
//then
//setup vector projection
//...
simArray[x][y][z].setupProjectionWrapper(timestep);
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
simArray[x][y][z].setBoundsToNeighborsWrapper(1, simArray[x][y][z].uVector);
simArray[x][y][z].setBoundsToNeighborsWrapper(2, simArray[x][y][z].vVector);
simArray[x][y][z].setBoundsToNeighborsWrapper(3, simArray[x][y][z].wVector);
}
}
}
}
@ -277,32 +267,57 @@ public class FluidSim {
}
}
}
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
simArray[x][y][z].setBoundsToNeighborsWrapper(0, simArray[x][y][z].uAdditionVector);
simArray[x][y][z].setBoundsToNeighborsWrapper(0, simArray[x][y][z].vAdditionVector);
}
}
}
//
//Perform main projection solver
for(int l = 0; l < LINEARSOLVERTIMES; l++){
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
//lin_solve(env, chunk_mask, N, b, x, x0, a, 1+6*a);
//+
//set_bnd(env, chunk_mask, N, b, x);
//for u, v, and w all in 1 shot
simArray[x][y][z].solveProjectionWrapper(timestep);
//be sure to set boundaries to neighbor chunk values where appropriate
}
}
}
//be sure to set boundaries to neighbor chunk values where appropriate
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
simArray[x][y][z].setBoundsToNeighborsWrapper(0, simArray[x][y][z].uAdditionVector);
// simArray[x][y][z].setBoundsToNeighborsWrapper(0, simArray[x][y][z].vAdditionVector);
}
}
}
}
//Finalize projection
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
//Subtract curl field from current vector field
//...
//set boundaries a final time for u,v,w
//...
simArray[x][y][z].finalizeProjectionWrapper(timestep);
}
}
}
//set boundaries a final time for u,v,w
//...
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
simArray[x][y][z].setBoundsToNeighborsWrapper(1, simArray[x][y][z].uVector);
simArray[x][y][z].setBoundsToNeighborsWrapper(2, simArray[x][y][z].vVector);
simArray[x][y][z].setBoundsToNeighborsWrapper(3, simArray[x][y][z].wVector);
}
}
}
}
private static void swapAllVectorFields(FluidSim[][][] simArray, float timestep){
@ -316,9 +331,23 @@ public class FluidSim {
}
private void swapVectorFields(){
ByteBuffer tmp;
//swap x0 <-> x
tmp = densityAddition;
densityAddition = density[13];
density[13] = tmp;
//swap u0 <-> u
tmp = uAdditionVector[13];
uAdditionVector[13] = uVector[13];
uVector[13] = tmp;
//swap v0 <-> v
tmp = vAdditionVector[13];
vAdditionVector[13] = vVector[13];
vVector[13] = tmp;
//swap w0 <-> w
tmp = wAdditionVector[13];
wAdditionVector[13] = wVector[13];
wVector[13] = tmp;
//...
}
@ -334,6 +363,16 @@ public class FluidSim {
}
}
}
//mirror neighbor data
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
simArray[x][y][z].setBoundsToNeighborsWrapper(1, simArray[x][y][z].uVector);
simArray[x][y][z].setBoundsToNeighborsWrapper(2, simArray[x][y][z].vVector);
simArray[x][y][z].setBoundsToNeighborsWrapper(3, simArray[x][y][z].wVector);
}
}
}
}
private static void addDensity(FluidSim[][][] simArray, float timestep){
@ -345,8 +384,6 @@ public class FluidSim {
//swap x <=> x0
//swap arrays in java side...
simArray[x][y][z].swapDensityArrays();
//setup density diffusion
simArray[x][y][z].setupDiffuseDensityWrapper(timestep);
}
}
}
@ -359,13 +396,22 @@ public class FluidSim {
}
private static void diffuseDensity(FluidSim[][][] simArray, float timestep){
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
//lin_solve(env, chunk_mask, N, b, x, x0, a, 1+6*a);
//+
//set_bnd(env, chunk_mask, N, b, x);
simArray[x][y][z].solveDiffuseDensityWrapper(timestep);
for(int l = 0; l < LINEARSOLVERTIMES; l++){
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
//lin_solve(env, chunk_mask, N, b, x, x0, a, 1+6*a);
//+
//set_bnd(env, chunk_mask, N, b, x);
simArray[x][y][z].solveDiffuseDensityWrapper(timestep);
}
}
}
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
simArray[x][y][z].setBoundsToNeighborsWrapper(0, simArray[x][y][z].density);
}
}
}
}
@ -444,9 +490,9 @@ public class FluidSim {
ByteBuffer[] u,
ByteBuffer[] v,
ByteBuffer[] w,
ByteBuffer u0,
ByteBuffer v0,
ByteBuffer w0,
ByteBuffer[] u0,
ByteBuffer[] v0,
ByteBuffer[] w0,
float DIFFUSION_CONSTANT,
float VISCOSITY_CONSTANT,
float timestep
@ -468,15 +514,7 @@ public class FluidSim {
private void addSourceToVectorsWrapper(float timestep){
addSourceToVectors(DIM, chunkMask, uVector, vVector, wVector, uAdditionVector, vAdditionVector, wAdditionVector, DIFFUSION_CONSTANT, VISCOSITY_CONSTANT, timestep);
}
private native void addSourceToVectors(int DIM_X, int chunkMask, ByteBuffer[] u, ByteBuffer v[], ByteBuffer w[], ByteBuffer u0, ByteBuffer v0, ByteBuffer w0, float DIFFUSION_CONSTANT, float VISCOSITY_CONSTANT, float timestep);
/**
* Setup u, v, and w to diffuse
*/
private void setupVectorDiffuseWrapper(float timestep){
setupVectorDiffuse(DIM, chunkMask, uVector, vVector, wVector, uAdditionVector, vAdditionVector, wAdditionVector, DIFFUSION_CONSTANT, VISCOSITY_CONSTANT, timestep);
}
private native void setupVectorDiffuse(int DIM_X, int chunkMask, ByteBuffer[] u, ByteBuffer v[], ByteBuffer w[], ByteBuffer u0, ByteBuffer v0, ByteBuffer w0, float DIFFUSION_CONSTANT, float VISCOSITY_CONSTANT, float timestep);
private native void addSourceToVectors(int DIM_X, int chunkMask, ByteBuffer[] u, ByteBuffer v[], ByteBuffer w[], ByteBuffer u0[], ByteBuffer v0[], ByteBuffer w0[], float DIFFUSION_CONSTANT, float VISCOSITY_CONSTANT, float timestep);
/**
* Solves u, v, and w diffusion systems of equations
@ -484,7 +522,7 @@ public class FluidSim {
private void solveVectorDiffuseWrapper(float timestep){
solveVectorDiffuse(DIM, chunkMask, uVector, vVector, wVector, uAdditionVector, vAdditionVector, wAdditionVector, DIFFUSION_CONSTANT, VISCOSITY_CONSTANT, timestep);
}
private native void solveVectorDiffuse(int DIM_X, int chunkMask, ByteBuffer[] u, ByteBuffer v[], ByteBuffer w[], ByteBuffer u0, ByteBuffer v0, ByteBuffer w0, float DIFFUSION_CONSTANT, float VISCOSITY_CONSTANT, float timestep);
private native void solveVectorDiffuse(int DIM_X, int chunkMask, ByteBuffer[] u, ByteBuffer v[], ByteBuffer w[], ByteBuffer u0[], ByteBuffer v0[], ByteBuffer w0[], float DIFFUSION_CONSTANT, float VISCOSITY_CONSTANT, float timestep);
/**
* Setup projection system
@ -492,7 +530,7 @@ public class FluidSim {
private void setupProjectionWrapper(float timestep){
setupProjection(DIM, chunkMask, uVector, vVector, wVector, uAdditionVector, vAdditionVector, wAdditionVector, DIFFUSION_CONSTANT, VISCOSITY_CONSTANT, timestep);
}
private native void setupProjection(int DIM_X, int chunkMask, ByteBuffer[] u, ByteBuffer v[], ByteBuffer w[], ByteBuffer u0, ByteBuffer v0, ByteBuffer w0, float DIFFUSION_CONSTANT, float VISCOSITY_CONSTANT, float timestep);
private native void setupProjection(int DIM_X, int chunkMask, ByteBuffer[] u, ByteBuffer v[], ByteBuffer w[], ByteBuffer u0[], ByteBuffer v0[], ByteBuffer w0[], float DIFFUSION_CONSTANT, float VISCOSITY_CONSTANT, float timestep);
/**
* Solve projection system
@ -500,7 +538,15 @@ public class FluidSim {
private void solveProjectionWrapper(float timestep){
solveProjection(DIM, chunkMask, uVector, vVector, wVector, uAdditionVector, vAdditionVector, wAdditionVector, DIFFUSION_CONSTANT, VISCOSITY_CONSTANT, timestep);
}
private native void solveProjection(int DIM_X, int chunkMask, ByteBuffer[] u, ByteBuffer v[], ByteBuffer w[], ByteBuffer u0, ByteBuffer v0, ByteBuffer w0, float DIFFUSION_CONSTANT, float VISCOSITY_CONSTANT, float timestep);
private native void solveProjection(int DIM_X, int chunkMask, ByteBuffer[] u, ByteBuffer v[], ByteBuffer w[], ByteBuffer u0[], ByteBuffer v0[], ByteBuffer w0[], float DIFFUSION_CONSTANT, float VISCOSITY_CONSTANT, float timestep);
/**
* Solve projection system
*/
// private void setProjectionBordersWrapper(float timestep){
// setProjectionBorders(DIM, chunkMask, uVector, vVector, wVector, uAdditionVector, vAdditionVector, wAdditionVector, DIFFUSION_CONSTANT, VISCOSITY_CONSTANT, timestep);
// }
// private native void setProjectionBorders(int DIM_X, int chunkMask, ByteBuffer[] u, ByteBuffer v[], ByteBuffer w[], ByteBuffer u0[], ByteBuffer v0[], ByteBuffer w0[], float DIFFUSION_CONSTANT, float VISCOSITY_CONSTANT, float timestep);
/**
* Does work like subtracting curl from vector field, setting boundaries, etc
@ -508,7 +554,7 @@ public class FluidSim {
private void finalizeProjectionWrapper(float timestep){
finalizeProjection(DIM, chunkMask, uVector, vVector, wVector, uAdditionVector, vAdditionVector, wAdditionVector, DIFFUSION_CONSTANT, VISCOSITY_CONSTANT, timestep);
}
private native void finalizeProjection(int DIM_X, int chunkMask, ByteBuffer[] u, ByteBuffer v[], ByteBuffer w[], ByteBuffer u0, ByteBuffer v0, ByteBuffer w0, float DIFFUSION_CONSTANT, float VISCOSITY_CONSTANT, float timestep);
private native void finalizeProjection(int DIM_X, int chunkMask, ByteBuffer[] u, ByteBuffer v[], ByteBuffer w[], ByteBuffer u0[], ByteBuffer v0[], ByteBuffer w0[], float DIFFUSION_CONSTANT, float VISCOSITY_CONSTANT, float timestep);
/**
* Advects vectors
@ -516,7 +562,7 @@ public class FluidSim {
private void advectVectorsWrapper(float timestep){
advectVectors(DIM, chunkMask, uVector, vVector, wVector, uAdditionVector, vAdditionVector, wAdditionVector, DIFFUSION_CONSTANT, VISCOSITY_CONSTANT, timestep);
}
private native void advectVectors(int DIM_X, int chunkMask, ByteBuffer[] u, ByteBuffer v[], ByteBuffer w[], ByteBuffer u0, ByteBuffer v0, ByteBuffer w0, float DIFFUSION_CONSTANT, float VISCOSITY_CONSTANT, float timestep);
private native void advectVectors(int DIM_X, int chunkMask, ByteBuffer[] u, ByteBuffer v[], ByteBuffer w[], ByteBuffer u0[], ByteBuffer v0[], ByteBuffer w0[], float DIFFUSION_CONSTANT, float VISCOSITY_CONSTANT, float timestep);
/**
* Adds density to the simulation
@ -526,14 +572,6 @@ public class FluidSim {
}
private native void addDensity(int DIM_X, int chunkMask, ByteBuffer[] x, ByteBuffer x0, float timestep);
/**
* Solve density diffusion
*/
private void setupDiffuseDensityWrapper(float timestep){
setupDiffuseDensity(DIM, chunkMask, density, densityAddition, uVector, vVector, wVector, DIFFUSION_CONSTANT, VISCOSITY_CONSTANT, timestep);
}
private native void setupDiffuseDensity(int DIM_X, int chunkMask, ByteBuffer[] x, ByteBuffer x0, ByteBuffer[] u, ByteBuffer v[], ByteBuffer w[], float DIFFUSION_CONSTANT, float VISCOSITY_CONSTANT, float timestep);
/**
* Solve density diffusion
*/
@ -551,6 +589,15 @@ public class FluidSim {
private native void advectDensity(int DIM_X, int chunkMask, ByteBuffer[] x, ByteBuffer x0, ByteBuffer[] u, ByteBuffer v[], ByteBuffer w[], float DIFFUSION_CONSTANT, float VISCOSITY_CONSTANT, float timestep);
/**
* Sets the bounds of the neighbormap to neighbor values if available
*/
private void setBoundsToNeighborsWrapper(int vectorDir, ByteBuffer[] neighborMap){
setBoundsToNeighbors(DIM, chunkMask, vectorDir, neighborMap);
}
private native void setBoundsToNeighbors(int DIM_X, int chunkMask, int vectorDir, ByteBuffer[] neighborMap);
@ -644,19 +691,19 @@ public class FluidSim {
if(densityAddition.position() > 0){
densityAddition.position(0);
}
if(uAdditionVector.position() > 0){
uAdditionVector.position(0);
if(uAdditionVector[13].position() > 0){
uAdditionVector[13].position(0);
}
if(vAdditionVector.position() > 0){
vAdditionVector.position(0);
if(vAdditionVector[13].position() > 0){
vAdditionVector[13].position(0);
}
if(wAdditionVector.position() > 0){
wAdditionVector.position(0);
if(wAdditionVector[13].position() > 0){
wAdditionVector[13].position(0);
}
FloatBuffer x0FloatView = densityAddition.asFloatBuffer();
FloatBuffer u0FloatView = uAdditionVector.asFloatBuffer();
FloatBuffer v0FloatView = vAdditionVector.asFloatBuffer();
FloatBuffer w0FloatView = wAdditionVector.asFloatBuffer();
FloatBuffer u0FloatView = uAdditionVector[13].asFloatBuffer();
FloatBuffer v0FloatView = vAdditionVector[13].asFloatBuffer();
FloatBuffer w0FloatView = wAdditionVector[13].asFloatBuffer();
for(int i = 0; i < DIM; i++){
for(int j = 0; j < DIM; j++){
for(int k = 0; k < DIM; k++){
@ -753,11 +800,26 @@ public class FluidSim {
return wVector[getNeighborIndex(1,1,1)];
}
public ByteBuffer getUAddBuffer(){
return uAdditionVector[getNeighborIndex(1,1,1)];
}
public ByteBuffer getVAddBuffer(){
return vAdditionVector[getNeighborIndex(1,1,1)];
}
public ByteBuffer getWAddBuffer(){
return wAdditionVector[getNeighborIndex(1,1,1)];
}
public void setNeighbor(int x, int y, int z, FluidSim neighbor){
density[getNeighborIndex(x,y,z)] = neighbor.getDensityBuffer();
uVector[getNeighborIndex(x,y,z)] = neighbor.getUBuffer();
vVector[getNeighborIndex(x,y,z)] = neighbor.getVBuffer();
wVector[getNeighborIndex(x,y,z)] = neighbor.getWBuffer();
uAdditionVector[getNeighborIndex(x,y,z)] = neighbor.getUAddBuffer();
vAdditionVector[getNeighborIndex(x,y,z)] = neighbor.getVAddBuffer();
wAdditionVector[getNeighborIndex(x,y,z)] = neighbor.getWAddBuffer();
}
}