Compare commits

..

29 Commits

Author SHA1 Message Date
unknown
858859043b Merge branch 'master' into migration-successful 2024-03-10 19:16:57 -04:00
unknown
6a8a461298 optimization work
All checks were successful
studiorailgun/fluid-sim/pipeline/head This commit looks good
2024-03-10 19:14:50 -04:00
unknown
1230ac51cb gcc optimization
All checks were successful
studiorailgun/fluid-sim/pipeline/head This commit looks good
2024-03-10 19:05:24 -04:00
unknown
6f052e48e6 remove JNI from core routines
All checks were successful
studiorailgun/fluid-sim/pipeline/head This commit looks good
2024-03-10 18:23:54 -04:00
unknown
eac79e0afc swapping arrays is raw arrays only
All checks were successful
studiorailgun/fluid-sim/pipeline/head This commit looks good
2024-03-10 18:11:32 -04:00
unknown
f93936a96e neighbor operations use raw arrays 2024-03-10 18:09:42 -04:00
unknown
79fa7715f0 swap all remaining to raw arrays
All checks were successful
studiorailgun/fluid-sim/pipeline/head This commit looks good
2024-03-10 18:04:55 -04:00
unknown
10c3987f2d main project swapped to raw arrays 2024-03-10 17:56:49 -04:00
unknown
18ac90affa swap vector fields
All checks were successful
studiorailgun/fluid-sim/pipeline/head This commit looks good
2024-03-10 17:50:25 -04:00
unknown
52e853f8ad swap adding forces 2024-03-10 17:48:37 -04:00
unknown
6afbbd7e2a clean up density calls
All checks were successful
studiorailgun/fluid-sim/pipeline/head This commit looks good
2024-03-10 17:45:51 -04:00
unknown
6b585b367b swapped all density functions to raw arrays 2024-03-10 17:43:48 -04:00
unknown
085cd18fdf swap diffusion solver to raw arrays 2024-03-10 17:39:21 -04:00
unknown
fb81cc2982 properly swapping direct arrays
All checks were successful
studiorailgun/fluid-sim/pipeline/head This commit looks good
2024-03-10 17:35:18 -04:00
unknown
70ab3b53e9 swap neighbors raw 2024-03-10 17:31:31 -04:00
unknown
d699a16e08 density using direct access 2024-03-10 17:28:55 -04:00
unknown
12a5352ae9 rename symbols, fix bug, total allocation working
All checks were successful
studiorailgun/fluid-sim/pipeline/head This commit looks good
2024-03-10 17:23:51 -04:00
unknown
1f39a03e06 fully parse out list of chunks
All checks were successful
studiorailgun/fluid-sim/pipeline/head This commit looks good
2024-03-10 17:11:34 -04:00
unknown
1389b47ce1 handle swapping density correctly 2024-03-10 17:10:46 -04:00
unknown
880cd1b675 start converting density phase 2024-03-10 17:09:43 -04:00
unknown
6867733a0f migrate velocity phase 2024-03-10 17:08:50 -04:00
unknown
2c70036f07 first projection correct 2024-03-10 17:07:35 -04:00
unknown
f1d3c3d011 swapping arrays correctly
All checks were successful
studiorailgun/fluid-sim/pipeline/head This commit looks good
2024-03-10 17:04:36 -04:00
unknown
67f12b7eb4 Fix bug in assignment in main funcs 2024-03-10 17:01:39 -04:00
unknown
a004e7e2c3 chunk referencing 2024-03-10 16:58:32 -04:00
unknown
a41a848c04 cleanup java side somewhat
All checks were successful
studiorailgun/fluid-sim/pipeline/head This commit looks good
2024-03-10 15:54:07 -04:00
unknown
9021125a74 All function calls on C side through wrappers 2024-03-10 15:47:43 -04:00
unknown
12dfd9e6b4 work to setup migration to c 2024-03-04 21:23:36 -05:00
unknown
e605a82df6 Jenkinsfile + gitignore
All checks were successful
studiorailgun/fluid-sim/pipeline/head This commit looks good
2024-03-04 20:53:19 -05:00
17 changed files with 1176 additions and 1301 deletions

3
.gitmodules vendored
View File

@ -1,3 +0,0 @@
[submodule "src/main/c/lib/stb"]
path = src/main/c/lib/stb
url = https://github.com/nothings/stb.git

View File

@ -1,5 +0,0 @@
dependencies:
- pthread

View File

@ -1,8 +1,7 @@
#include <jni.h>
#include <stdint.h>
#include "../includes/libfluidsim.h"
#include "../includes/utilities.h"
#include "../includes/chunkmask.h"
#include "includes/utilities.h"
#include "includes/chunkmask.h"
uint32_t matrix_transform(JNIEnv * env, jobjectArray jrx);

View File

@ -41,29 +41,24 @@ rm -f ./*.dll
#compile object files
COMPILE_FLAGS="-c -fPIC -m64 -mavx -mavx2 -O1"
INPUT_FILES="./src/densitystep.c"
OUTPUT_FILE="./densitystep.o"
gcc $COMPILE_FLAGS -I"$BASE_INCLUDE_DIR" -I"$OS_INCLUDE_DIR" $INPUT_FILES -o $OUTPUT_FILE
# COMPILE_FLAGS="-c -fPIC -m64 -mavx -mavx2 -march=native -Ofast -msse -msse2 -msse3 -mmmx -m3dnow"
# INPUT_FILES="./densitystep.c"
# OUTPUT_FILE="./densitystep.o"
# gcc $COMPILE_FLAGS -I"$BASE_INCLUDE_DIR" -I"$OS_INCLUDE_DIR" $INPUT_FILES -o $OUTPUT_FILE
COMPILE_FLAGS="-c -fPIC -m64 -mavx -mavx2 -O1"
INPUT_FILES="./src/velocitystep.c"
OUTPUT_FILE="./velocitystep.o"
gcc $COMPILE_FLAGS -I"$BASE_INCLUDE_DIR" -I"$OS_INCLUDE_DIR" $INPUT_FILES -o $OUTPUT_FILE
# COMPILE_FLAGS="-c -fPIC -m64 -mavx -mavx2 -march=native -Ofast -msse -msse2 -msse3 -mmmx -m3dnow"
# INPUT_FILES="./velocitystep.c"
# OUTPUT_FILE="./velocitystep.o"
# gcc $COMPILE_FLAGS -I"$BASE_INCLUDE_DIR" -I"$OS_INCLUDE_DIR" $INPUT_FILES -o $OUTPUT_FILE
COMPILE_FLAGS="-c -fPIC -m64 -mavx -mavx2 -O1"
INPUT_FILES="./src/chunkmask.c"
OUTPUT_FILE="./chunkmask.o"
gcc $COMPILE_FLAGS -I"$BASE_INCLUDE_DIR" -I"$OS_INCLUDE_DIR" $INPUT_FILES -o $OUTPUT_FILE
# COMPILE_FLAGS="-c -fPIC -m64 -mavx -mavx2 -march=native -Ofast -msse -msse2 -msse3 -mmmx -m3dnow"
# INPUT_FILES="./chunkmask.c"
# OUTPUT_FILE="./chunkmask.o"
# gcc $COMPILE_FLAGS -I"$BASE_INCLUDE_DIR" -I"$OS_INCLUDE_DIR" $INPUT_FILES -o $OUTPUT_FILE
COMPILE_FLAGS="-c -fPIC -m64 -mavx -mavx2 -O1"
INPUT_FILES="./src/threadpool.c"
OUTPUT_FILE="./threadpool.o"
gcc $COMPILE_FLAGS -I"$BASE_INCLUDE_DIR" -I"$OS_INCLUDE_DIR" $INPUT_FILES -o $OUTPUT_FILE
COMPILE_FLAGS="-c -fPIC -m64 -mavx -mavx2 -O1"
INPUT_FILES="./src/libfluidsim.c"
OUTPUT_FILE="./libfluidsim.o"
COMPILE_FLAGS="-c -fPIC -m64 -mavx -mavx2 -march=native -Ofast -msse -msse2 -msse3 -mmmx -m3dnow"
INPUT_FILES="./fluidsim.c"
OUTPUT_FILE="./fluidsim.o"
gcc $COMPILE_FLAGS -I"$BASE_INCLUDE_DIR" -I"$OS_INCLUDE_DIR" $INPUT_FILES -o $OUTPUT_FILE
@ -71,7 +66,7 @@ gcc $COMPILE_FLAGS -I"$BASE_INCLUDE_DIR" -I"$OS_INCLUDE_DIR" $INPUT_FILES -o $OU
#compile shared object file
OUTPUT_FILE="libfluidsim$LIB_ENDING"
COMPILE_FLAGS="-shared"
INPUT_FILES="densitystep.o velocitystep.o chunkmask.o threadpool.o libfluidsim.o"
INPUT_FILES="fluidsim.o"
gcc $COMPILE_FLAGS $INPUT_FILES -o $OUTPUT_FILE
#move to resources

View File

@ -2,39 +2,54 @@
#include <immintrin.h>
#include <stdint.h>
#include "../includes/libfluidsim.h"
#include "../includes/utilities.h"
#include "../includes/chunkmask.h"
#include "includes/utilities.h"
#include "includes/chunkmask.h"
void advectDensity(uint32_t chunk_mask, int N, int b, float ** d, float ** d0, float * u, float * v, float * w, float dt);
void addDensity(
/*
* Class: electrosphere_FluidSim
* Method: addDensity
* Signature: (II[Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;F)V
*/
void Java_electrosphere_FluidSim_addDensity
(
int N,
int chunk_mask,
float * x,
float * s,
float ** d,
float ** d0,
float dt){
int i;
int size=N*N*N;
float * x = GET_ARR_RAW(env,d,CENTER_LOC);
float * s = GET_ARR_RAW(env,d0,CENTER_LOC);
for(i=0; i<size; i++){
x[i] += dt*s[i];
}
}
void diffuseDensity(
/*
* Class: electrosphere_FluidSim
* Method: solveDiffuseDensity
* Signature: (II[Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
void Java_electrosphere_FluidSim_solveDiffuseDensity
(
int N,
int chunk_mask,
float * jrx,
float * jrx0,
float ** d,
float ** d0,
float ** jru,
float ** jrv,
float ** jrw,
float DIFFUSION_CONST,
float VISCOSITY_CONST,
float dt){
float a=dt*DIFFUSION_CONST*N*N*N;
float c=1+6*a;
int i, j, k, l, m;
float * x = jrx;
float * x0 = jrx0;
float * x = GET_ARR_RAW(env,d,CENTER_LOC);
float * x0 = GET_ARR_RAW(env,d0,CENTER_LOC);
__m256 aScalar = _mm256_set1_ps(a);
__m256 cScalar = _mm256_set1_ps(c);
@ -66,21 +81,41 @@ void diffuseDensity(
}
}
void advectDensity(uint32_t chunk_mask, int N, float * jrd, float * jrd0, float * u, float * v, float * w, float dt){
/*
* Class: electrosphere_FluidSim
* Method: advectDensity
* Signature: (II[Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
void Java_electrosphere_FluidSim_advectDensity
(
int N,
int chunk_mask,
float ** d,
float ** d0,
float ** jru,
float ** jrv,
float ** jrw,
float DIFFUSION_CONST,
float VISCOSITY_CONST,
float dt){
advectDensity(chunk_mask,N,3,d,d0,GET_ARR_RAW(env,jru,CENTER_LOC),GET_ARR_RAW(env,jrv,CENTER_LOC),GET_ARR_RAW(env,jrw,CENTER_LOC),dt);
}
void advectDensity(uint32_t chunk_mask, int N, int b, float ** d, float ** d0, float * u, float * v, float * w, float dt){
int i, j, k, i0, j0, k0, i1, j1, k1;
int m,n,o;
float x, y, z, s0, t0, s1, t1, u1, u0, dtx,dty,dtz;
dtx=dty=dtz=dt*N;
float * d = jrd;
float * center_d = GET_ARR_RAW(env,d,CENTER_LOC);
float * d0 = jrd0;
float * center_d0 = GET_ARR_RAW(env,d0,CENTER_LOC);
for(k=1; k<N-1; k++){
for(j=1; j<N-1; j++){
for(i=1; i<N-1; i++){
d0 = jrd0;
center_d0 = GET_ARR_RAW(env,d0,CENTER_LOC);
//calculate location to pull from
x = i-dtx*u[IX(i,j,k)];
y = j-dty*v[IX(i,j,k)];
@ -88,12 +123,12 @@ void advectDensity(uint32_t chunk_mask, int N, float * jrd, float * jrd0, float
m = n = o = 1;
// if(x < 1){ m -= 1; }
// if(x >= N-1){ m += 1; }
// if(y < 1){ n -= 1; }
// if(y >= N-1){ n += 1; }
// if(z < 1){ o -= 1; }
// if(z >= N-1){ o += 1; }
if(x < 1){ m -= 1; }
if(x >= N-1){ m += 1; }
if(y < 1){ n -= 1; }
if(y >= N-1){ n += 1; }
if(z < 1){ o -= 1; }
if(z >= N-1){ o += 1; }
//If the out of bounds coordinate is in bounds for a neighbor chunk, use that chunk as source instead
// if(CK(m,n,o) != CENTER_LOC){
@ -195,18 +230,18 @@ void advectDensity(uint32_t chunk_mask, int N, float * jrd, float * jrd0, float
// if(k1 < 0){
// k1 = 0;
// }
d[IX(i,j,k)] =
center_d[IX(i,j,k)] =
s0*(
t0*u0*d0[IX(i0,j0,k0)]+
t1*u0*d0[IX(i0,j1,k0)]+
t0*u1*d0[IX(i0,j0,k1)]+
t1*u1*d0[IX(i0,j1,k1)]
t0*u0*center_d0[IX(i0,j0,k0)]+
t1*u0*center_d0[IX(i0,j1,k0)]+
t0*u1*center_d0[IX(i0,j0,k1)]+
t1*u1*center_d0[IX(i0,j1,k1)]
)+
s1*(
t0*u0*d0[IX(i1,j0,k0)]+
t1*u0*d0[IX(i1,j1,k0)]+
t0*u1*d0[IX(i1,j0,k1)]+
t1*u1*d0[IX(i1,j1,k1)]
t0*u0*center_d0[IX(i1,j0,k0)]+
t1*u0*center_d0[IX(i1,j1,k0)]+
t0*u1*center_d0[IX(i1,j0,k1)]+
t1*u1*center_d0[IX(i1,j1,k1)]
);
}
}

778
src/main/c/fluidsim.c Normal file
View File

@ -0,0 +1,778 @@
#include <jni.h>
#include <stdint.h>
#include "includes/utilities.h"
#include "includes/chunkmask.h"
#include "includes/electrosphere_FluidSim.h"
#include "includes/mainFunctions.h"
#include "./chunkmask.c"
#include "./velocitystep.c"
#include "./densitystep.c"
//include stb ds
#define STB_DS_IMPLEMENTATION
#include "./lib/stb/stb_ds.h"
#define DIM 18
#define LINEARSOLVERTIMES 20
#define DIFFUSION_CONSTANT 0.000001
#define VISCOSITY_CONSTANT 0.000001
/**
* A chunk
*/
typedef struct {
jobject jchunk;
float * d[27];
float * d0[27];
float * u[27];
float * v[27];
float * w[27];
float * u0[27];
float * v0[27];
float * w0[27];
jobjectArray jd;
jobjectArray jd0;
jobjectArray ju;
jobjectArray jv;
jobjectArray jw;
jobjectArray ju0;
jobjectArray jv0;
jobjectArray jw0;
int chunkMask;
} Chunk;
//all chunks
Chunk ** chunks = NULL;
#define getChunk(i) (*env)->CallObjectMethod(env,chunkList,jListGet,i)
#define getBuffArr(buffId) (*env)->GetObjectField(env,chunkJRaw,buffId)
#define setBuffArr(buffId,value) (*env)->SetObjectField(env,chunkJRaw,buffId,value)
//jni help:
//https://stackoverflow.com/questions/39823375/clarification-about-getfieldid
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_simulate(
JNIEnv * env,
jclass class,
jobject chunkList,
jfloat timestep
){
jclass listClass = (*env)->FindClass(env,"java/util/List");
jclass fluidSimClass = (*env)->FindClass(env,"electrosphere/FluidSim");
//JNIEnv *env, jclass clazz, const char *name, const char *sig
jmethodID jListSize = (*env)->GetMethodID(env, listClass, "size", "()I");
jmethodID jListGet = (*env)->GetMethodID(env, listClass, "get", "(I)Ljava/lang/Object;");
jmethodID jListAdd = (*env)->GetMethodID(env, listClass, "add", "(Ljava/lang/Object;)Z");
//ByteBuffer[]
jfieldID dJId = (*env)->GetFieldID(env,fluidSimClass,"density","[Ljava/nio/ByteBuffer;");
jfieldID d0JId = (*env)->GetFieldID(env,fluidSimClass,"densityAddition","[Ljava/nio/ByteBuffer;");
jfieldID uJId = (*env)->GetFieldID(env,fluidSimClass,"uVector","[Ljava/nio/ByteBuffer;");
jfieldID vJId = (*env)->GetFieldID(env,fluidSimClass,"vVector","[Ljava/nio/ByteBuffer;");
jfieldID wJId = (*env)->GetFieldID(env,fluidSimClass,"wVector","[Ljava/nio/ByteBuffer;");
jfieldID u0JId = (*env)->GetFieldID(env,fluidSimClass,"uAdditionVector","[Ljava/nio/ByteBuffer;");
jfieldID v0JId = (*env)->GetFieldID(env,fluidSimClass,"vAdditionVector","[Ljava/nio/ByteBuffer;");
jfieldID w0JId = (*env)->GetFieldID(env,fluidSimClass,"wAdditionVector","[Ljava/nio/ByteBuffer;");
jfieldID chunkmaskJId = (*env)->GetFieldID(env,fluidSimClass,"chunkMask","I");
//the number of chunks
int numChunks = (*env)->CallIntMethod(env,chunkList,jListSize);
//current chunk (this)
jobject chunkJRaw;
//current chunk fields
jobjectArray jd;
jobjectArray jd0;
jobjectArray u;
jobjectArray v;
jobjectArray w;
jobjectArray u0;
jobjectArray v0;
jobjectArray w0;
int chunkMask;
//solve chunk mask
for(int i = 0; i < numChunks; i++){
chunkJRaw = getChunk(i);
chunkMask = Java_electrosphere_FluidSim_calculateChunkMask(env,chunkJRaw,getBuffArr(dJId));
(*env)->SetIntField(env,chunkJRaw,chunkmaskJId,chunkMask);
Chunk * newChunk;
if(i >= stbds_arrlen(chunks)){
// printf("allocate chunk %d\n",i);
// fflush(stdout);
newChunk = (Chunk *)malloc(sizeof(Chunk));
// printf("new chunk %p\n",newChunk);
// fflush(stdout);
stbds_arrput(chunks,newChunk);
// printf("new chunk %p\n",chunks[i]);
// fflush(stdout);
} else {
newChunk = chunks[i];
// printf("get chunk %d: %p\n",i,newChunk);
// fflush(stdout);
}
jd = (*env)->GetObjectField(env,chunkJRaw,dJId);
jd0 = (*env)->GetObjectField(env,chunkJRaw,d0JId);
u = (*env)->GetObjectField(env,chunkJRaw,uJId);
v = (*env)->GetObjectField(env,chunkJRaw,vJId);
w = (*env)->GetObjectField(env,chunkJRaw,wJId);
u0 = (*env)->GetObjectField(env,chunkJRaw,u0JId);
v0 = (*env)->GetObjectField(env,chunkJRaw,v0JId);
w0 = (*env)->GetObjectField(env,chunkJRaw,w0JId);
newChunk->jd = jd;
newChunk->jd0 = jd0;
newChunk->ju = u;
newChunk->jv = v;
newChunk->jw = w;
newChunk->ju0 = u0;
newChunk->jv0 = v0;
newChunk->jw0 = w0;
newChunk->jchunk = chunkJRaw;
newChunk->chunkMask = chunkMask;
for(int j = 0; j < 27; j++){
if((chunkMask & CHUNK_INDEX_ARR[j]) > 0){
newChunk->d[j] = GET_ARR(env,jd,j);
newChunk->d0[j] = GET_ARR(env,jd0,j);
newChunk->u[j] = GET_ARR(env,u,j);
newChunk->v[j] = GET_ARR(env,v,j);
newChunk->w[j] = GET_ARR(env,w,j);
newChunk->u0[j] = GET_ARR(env,u0,j);
newChunk->v0[j] = GET_ARR(env,v0,j);
newChunk->w0[j] = GET_ARR(env,w0,j);
}
}
// for(int j = 0; j < 27; j++){
// newChunk.d[j] = GET_ARR(env,d,j);
// }
// chunks[i].d0 = getBuffArr(d0JId);
// chunks[i].u = getBuffArr(uJId);
// chunks[i].v = getBuffArr(vJId);
// chunks[i].w = getBuffArr(wJId);
// chunks[i].u0 = getBuffArr(u0JId);
// chunks[i].v0 = getBuffArr(v0JId);
// chunks[i].w0 = getBuffArr(w0JId);
}
// printf("%p\n",chunks[0].d);
//solve chunk mask
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
chunkJRaw = currentChunk->jchunk;
chunkMask = currentChunk->chunkMask;
jd = currentChunk->jd;
jd0 = currentChunk->jd0;
u = currentChunk->ju;
v = currentChunk->jv;
w = currentChunk->jw;
u0 = currentChunk->ju0;
v0 = currentChunk->jv0;
w0 = currentChunk->jw0;
//old assignments
// chunkJRaw = getChunk(i);
// chunkMask = (*env)->GetIntField(env,chunkJRaw,chunkmaskJId);
// d = getBuffArr(dJId);
// d0 = getBuffArr(d0JId);
// u = getBuffArr(uJId);
// v = getBuffArr(vJId);
// w = getBuffArr(wJId);
// u0 = getBuffArr(u0JId);
// v0 = getBuffArr(v0JId);
// w0 = getBuffArr(w0JId);
Java_electrosphere_FluidSim_addSourceToVectors(
DIM,
chunkMask,
currentChunk->u,
currentChunk->v,
currentChunk->w,
currentChunk->u0,
currentChunk->v0,
currentChunk->w0,
DIFFUSION_CONSTANT,
VISCOSITY_CONSTANT,
timestep
);
}
//swap all vector fields
{
//swap vector fields
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
chunkJRaw = currentChunk->jchunk;
chunkMask = currentChunk->chunkMask;
float * tmpArr;
for(int j = 0; j < 27; j++){
tmpArr = currentChunk->u[j];
currentChunk->u[j] = currentChunk->u0[j];
currentChunk->u0[j] = tmpArr;
}
for(int j = 0; j < 27; j++){
tmpArr = currentChunk->v[j];
currentChunk->v[j] = currentChunk->v0[j];
currentChunk->v0[j] = tmpArr;
}
for(int j = 0; j < 27; j++){
tmpArr = currentChunk->w[j];
currentChunk->w[j] = currentChunk->w0[j];
currentChunk->w0[j] = tmpArr;
}
}
//copy neighbors
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
chunkJRaw = currentChunk->jchunk;
chunkMask = currentChunk->chunkMask;
jd = currentChunk->jd;
jd0 = currentChunk->jd0;
u = currentChunk->ju;
v = currentChunk->jv;
w = currentChunk->jw;
u0 = currentChunk->ju0;
v0 = currentChunk->jv0;
w0 = currentChunk->jw0;
copyNeighborsRaw(DIM,chunkMask,0,1,currentChunk->u);
copyNeighborsRaw(DIM,chunkMask,0,2,currentChunk->v);
copyNeighborsRaw(DIM,chunkMask,0,3,currentChunk->w);
copyNeighborsRaw(DIM,chunkMask,0,1,currentChunk->u0);
copyNeighborsRaw(DIM,chunkMask,0,2,currentChunk->v0);
copyNeighborsRaw(DIM,chunkMask,0,3,currentChunk->w0);
}
}
//solve vector diffusion
{
for(int l = 0; l < LINEARSOLVERTIMES; l++){
//solve vector diffusion
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
chunkJRaw = currentChunk->jchunk;
chunkMask = currentChunk->chunkMask;
jd = currentChunk->jd;
jd0 = currentChunk->jd0;
u = currentChunk->ju;
v = currentChunk->jv;
w = currentChunk->jw;
u0 = currentChunk->ju0;
v0 = currentChunk->jv0;
w0 = currentChunk->jw0;
Java_electrosphere_FluidSim_solveVectorDiffuse(DIM,chunkMask,currentChunk->u,currentChunk->v,currentChunk->w,currentChunk->u0,currentChunk->v0,currentChunk->w0,DIFFUSION_CONSTANT,VISCOSITY_CONSTANT,timestep);
}
//update array for vectors
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
chunkJRaw = currentChunk->jchunk;
chunkMask = currentChunk->chunkMask;
jd = currentChunk->jd;
jd0 = currentChunk->jd0;
u = currentChunk->ju;
v = currentChunk->jv;
w = currentChunk->jw;
u0 = currentChunk->ju0;
v0 = currentChunk->jv0;
w0 = currentChunk->jw0;
setBoundsToNeighborsRaw(DIM,chunkMask,1,currentChunk->u);
setBoundsToNeighborsRaw(DIM,chunkMask,2,currentChunk->v);
setBoundsToNeighborsRaw(DIM,chunkMask,3,currentChunk->w);
copyNeighborsRaw(DIM,chunkMask,0,1,currentChunk->u);
copyNeighborsRaw(DIM,chunkMask,0,2,currentChunk->v);
copyNeighborsRaw(DIM,chunkMask,0,3,currentChunk->w);
}
}
}
//solve projection
{
//update array for vectors
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
chunkJRaw = currentChunk->jchunk;
chunkMask = currentChunk->chunkMask;
jd = currentChunk->jd;
jd0 = currentChunk->jd0;
u = currentChunk->ju;
v = currentChunk->jv;
w = currentChunk->jw;
u0 = currentChunk->ju0;
v0 = currentChunk->jv0;
w0 = currentChunk->jw0;
setBoundsToNeighborsRaw(DIM,chunkMask,1,currentChunk->u);
setBoundsToNeighborsRaw(DIM,chunkMask,2,currentChunk->v);
setBoundsToNeighborsRaw(DIM,chunkMask,3,currentChunk->w);
setBoundsToNeighborsRaw(DIM,chunkMask,1,currentChunk->u0);
setBoundsToNeighborsRaw(DIM,chunkMask,2,currentChunk->v0);
copyNeighborsRaw(DIM,chunkMask,0,1,currentChunk->u);
copyNeighborsRaw(DIM,chunkMask,0,2,currentChunk->v);
copyNeighborsRaw(DIM,chunkMask,0,3,currentChunk->w);
copyNeighborsRaw(DIM,chunkMask,0,1,currentChunk->u0);
copyNeighborsRaw(DIM,chunkMask,0,2,currentChunk->v0);
}
//setup projection
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
chunkJRaw = currentChunk->jchunk;
chunkMask = currentChunk->chunkMask;
jd = currentChunk->jd;
jd0 = currentChunk->jd0;
u = currentChunk->ju;
v = currentChunk->jv;
w = currentChunk->jw;
u0 = currentChunk->ju0;
v0 = currentChunk->jv0;
w0 = currentChunk->jw0;
Java_electrosphere_FluidSim_setupProjection(DIM,chunkMask,currentChunk->u,currentChunk->v,currentChunk->w,currentChunk->u0,currentChunk->v0,currentChunk->w0,DIFFUSION_CONSTANT,VISCOSITY_CONSTANT,timestep);
}
//update array for vectors
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
chunkJRaw = currentChunk->jchunk;
chunkMask = currentChunk->chunkMask;
jd = currentChunk->jd;
jd0 = currentChunk->jd0;
u = currentChunk->ju;
v = currentChunk->jv;
w = currentChunk->jw;
u0 = currentChunk->ju0;
v0 = currentChunk->jv0;
w0 = currentChunk->jw0;
setBoundsToNeighborsRaw(DIM,chunkMask,1,currentChunk->u0);
setBoundsToNeighborsRaw(DIM,chunkMask,2,currentChunk->v0);
copyNeighborsRaw(DIM,chunkMask,0,1,currentChunk->u0);
copyNeighborsRaw(DIM,chunkMask,0,2,currentChunk->v0);
}
//samples u0, v0
//sets u0
//these should have just been mirrored in the above
//
//Perform main projection solver
for(int l = 0; l < LINEARSOLVERTIMES; l++){
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
chunkJRaw = currentChunk->jchunk;
chunkMask = currentChunk->chunkMask;
jd = currentChunk->jd;
jd0 = currentChunk->jd0;
u = currentChunk->ju;
v = currentChunk->jv;
w = currentChunk->jw;
u0 = currentChunk->ju0;
v0 = currentChunk->jv0;
w0 = currentChunk->jw0;
Java_electrosphere_FluidSim_solveProjection(DIM,chunkMask,currentChunk->u,currentChunk->v,currentChunk->w,currentChunk->u0,currentChunk->v0,currentChunk->w0,DIFFUSION_CONSTANT,VISCOSITY_CONSTANT,timestep);
}
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
chunkJRaw = currentChunk->jchunk;
chunkMask = currentChunk->chunkMask;
jd = currentChunk->jd;
jd0 = currentChunk->jd0;
u = currentChunk->ju;
v = currentChunk->jv;
w = currentChunk->jw;
u0 = currentChunk->ju0;
v0 = currentChunk->jv0;
w0 = currentChunk->jw0;
setBoundsToNeighborsRaw(DIM,chunkMask,1,currentChunk->u0);
copyNeighborsRaw(DIM,chunkMask,0,1,currentChunk->u0);
}
}
//samples u,v,w,u0
//sets u,v,w
//Finalize projection
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
chunkJRaw = currentChunk->jchunk;
chunkMask = currentChunk->chunkMask;
jd = currentChunk->jd;
jd0 = currentChunk->jd0;
u = currentChunk->ju;
v = currentChunk->jv;
w = currentChunk->jw;
u0 = currentChunk->ju0;
v0 = currentChunk->jv0;
w0 = currentChunk->jw0;
Java_electrosphere_FluidSim_finalizeProjection(DIM,chunkMask,currentChunk->u,currentChunk->v,currentChunk->w,currentChunk->u0,currentChunk->v0,currentChunk->w0,DIFFUSION_CONSTANT,VISCOSITY_CONSTANT,timestep);
}
//set boundaries a final time for u,v,w
//...
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
chunkJRaw = currentChunk->jchunk;
chunkMask = currentChunk->chunkMask;
jd = currentChunk->jd;
jd0 = currentChunk->jd0;
u = currentChunk->ju;
v = currentChunk->jv;
w = currentChunk->jw;
u0 = currentChunk->ju0;
v0 = currentChunk->jv0;
w0 = currentChunk->jw0;
setBoundsToNeighborsRaw(DIM,chunkMask,1,currentChunk->u);
setBoundsToNeighborsRaw(DIM,chunkMask,2,currentChunk->v);
setBoundsToNeighborsRaw(DIM,chunkMask,3,currentChunk->w);
setBoundsToNeighborsRaw(DIM,chunkMask,1,currentChunk->u0);
setBoundsToNeighborsRaw(DIM,chunkMask,2,currentChunk->v0);
setBoundsToNeighborsRaw(DIM,chunkMask,3,currentChunk->w0);
copyNeighborsRaw(DIM,chunkMask,0,1,currentChunk->u);
copyNeighborsRaw(DIM,chunkMask,0,2,currentChunk->v);
copyNeighborsRaw(DIM,chunkMask,0,3,currentChunk->w);
copyNeighborsRaw(DIM,chunkMask,0,1,currentChunk->u0);
copyNeighborsRaw(DIM,chunkMask,0,2,currentChunk->v0);
copyNeighborsRaw(DIM,chunkMask,0,3,currentChunk->w0);
}
}
//swap all vector fields
{
//swap vector fields
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
chunkJRaw = currentChunk->jchunk;
chunkMask = currentChunk->chunkMask;
float * tmpArr;
for(int j = 0; j < 27; j++){
tmpArr = currentChunk->u[j];
currentChunk->u[j] = currentChunk->u0[j];
currentChunk->u0[j] = tmpArr;
}
for(int j = 0; j < 27; j++){
tmpArr = currentChunk->v[j];
currentChunk->v[j] = currentChunk->v0[j];
currentChunk->v0[j] = tmpArr;
}
for(int j = 0; j < 27; j++){
tmpArr = currentChunk->w[j];
currentChunk->w[j] = currentChunk->w0[j];
currentChunk->w0[j] = tmpArr;
}
}
//copy neighbors
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
chunkJRaw = currentChunk->jchunk;
chunkMask = currentChunk->chunkMask;
jd = currentChunk->jd;
jd0 = currentChunk->jd0;
u = currentChunk->ju;
v = currentChunk->jv;
w = currentChunk->jw;
u0 = currentChunk->ju0;
v0 = currentChunk->jv0;
w0 = currentChunk->jw0;
copyNeighborsRaw(DIM,chunkMask,0,1,currentChunk->u);
copyNeighborsRaw(DIM,chunkMask,0,2,currentChunk->v);
copyNeighborsRaw(DIM,chunkMask,0,3,currentChunk->w);
copyNeighborsRaw(DIM,chunkMask,0,1,currentChunk->u0);
copyNeighborsRaw(DIM,chunkMask,0,2,currentChunk->v0);
copyNeighborsRaw(DIM,chunkMask,0,3,currentChunk->w0);
}
}
//advect vectors across boundaries
{
//update border arrs
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
chunkJRaw = currentChunk->jchunk;
chunkMask = currentChunk->chunkMask;
jd = currentChunk->jd;
jd0 = currentChunk->jd0;
u = currentChunk->ju;
v = currentChunk->jv;
w = currentChunk->jw;
u0 = currentChunk->ju0;
v0 = currentChunk->jv0;
w0 = currentChunk->jw0;
setBoundsToNeighborsRaw(DIM,chunkMask,1,currentChunk->u);
setBoundsToNeighborsRaw(DIM,chunkMask,2,currentChunk->v);
setBoundsToNeighborsRaw(DIM,chunkMask,3,currentChunk->w);
setBoundsToNeighborsRaw(DIM,chunkMask,1,currentChunk->u0);
setBoundsToNeighborsRaw(DIM,chunkMask,2,currentChunk->v0);
setBoundsToNeighborsRaw(DIM,chunkMask,3,currentChunk->w0);
copyNeighborsRaw(DIM,chunkMask,0,1,currentChunk->u);
copyNeighborsRaw(DIM,chunkMask,0,2,currentChunk->v);
copyNeighborsRaw(DIM,chunkMask,0,3,currentChunk->w);
copyNeighborsRaw(DIM,chunkMask,0,1,currentChunk->u0);
copyNeighborsRaw(DIM,chunkMask,0,2,currentChunk->v0);
copyNeighborsRaw(DIM,chunkMask,0,3,currentChunk->w0);
}
//advect
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
chunkJRaw = currentChunk->jchunk;
chunkMask = currentChunk->chunkMask;
jd = currentChunk->jd;
jd0 = currentChunk->jd0;
u = currentChunk->ju;
v = currentChunk->jv;
w = currentChunk->jw;
u0 = currentChunk->ju0;
v0 = currentChunk->jv0;
w0 = currentChunk->jw0;
Java_electrosphere_FluidSim_advectVectors(DIM,chunkMask,currentChunk->u,currentChunk->v,currentChunk->w,currentChunk->u0,currentChunk->v0,currentChunk->w0,DIFFUSION_CONSTANT,VISCOSITY_CONSTANT,timestep);
}
//update neighbor arr
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
chunkJRaw = currentChunk->jchunk;
chunkMask = currentChunk->chunkMask;
jd = currentChunk->jd;
jd0 = currentChunk->jd0;
u = currentChunk->ju;
v = currentChunk->jv;
w = currentChunk->jw;
u0 = currentChunk->ju0;
v0 = currentChunk->jv0;
w0 = currentChunk->jw0;
setBoundsToNeighborsRaw(DIM,chunkMask,1,currentChunk->u);
setBoundsToNeighborsRaw(DIM,chunkMask,2,currentChunk->v);
setBoundsToNeighborsRaw(DIM,chunkMask,3,currentChunk->w);
copyNeighborsRaw(DIM,chunkMask,0,1,currentChunk->u);
copyNeighborsRaw(DIM,chunkMask,0,2,currentChunk->v);
copyNeighborsRaw(DIM,chunkMask,0,3,currentChunk->w);
}
}
//solve projection
{
//update array for vectors
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
chunkJRaw = currentChunk->jchunk;
chunkMask = currentChunk->chunkMask;
jd = currentChunk->jd;
jd0 = currentChunk->jd0;
u = currentChunk->ju;
v = currentChunk->jv;
w = currentChunk->jw;
u0 = currentChunk->ju0;
v0 = currentChunk->jv0;
w0 = currentChunk->jw0;
setBoundsToNeighborsRaw(DIM,chunkMask,1,currentChunk->u);
setBoundsToNeighborsRaw(DIM,chunkMask,2,currentChunk->v);
setBoundsToNeighborsRaw(DIM,chunkMask,3,currentChunk->w);
setBoundsToNeighborsRaw(DIM,chunkMask,1,currentChunk->u0);
setBoundsToNeighborsRaw(DIM,chunkMask,2,currentChunk->v0);
copyNeighborsRaw(DIM,chunkMask,0,1,currentChunk->u);
copyNeighborsRaw(DIM,chunkMask,0,2,currentChunk->v);
copyNeighborsRaw(DIM,chunkMask,0,3,currentChunk->w);
copyNeighborsRaw(DIM,chunkMask,0,1,currentChunk->u0);
copyNeighborsRaw(DIM,chunkMask,0,2,currentChunk->v0);
}
//setup projection
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
chunkJRaw = currentChunk->jchunk;
chunkMask = currentChunk->chunkMask;
jd = currentChunk->jd;
jd0 = currentChunk->jd0;
u = currentChunk->ju;
v = currentChunk->jv;
w = currentChunk->jw;
u0 = currentChunk->ju0;
v0 = currentChunk->jv0;
w0 = currentChunk->jw0;
Java_electrosphere_FluidSim_setupProjection(DIM,chunkMask,currentChunk->u,currentChunk->v,currentChunk->w,currentChunk->u0,currentChunk->v0,currentChunk->w0,DIFFUSION_CONSTANT,VISCOSITY_CONSTANT,timestep);
}
//update array for vectors
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
chunkJRaw = currentChunk->jchunk;
chunkMask = currentChunk->chunkMask;
jd = currentChunk->jd;
jd0 = currentChunk->jd0;
u = currentChunk->ju;
v = currentChunk->jv;
w = currentChunk->jw;
u0 = currentChunk->ju0;
v0 = currentChunk->jv0;
w0 = currentChunk->jw0;
setBoundsToNeighborsRaw(DIM,chunkMask,1,currentChunk->u0);
setBoundsToNeighborsRaw(DIM,chunkMask,2,currentChunk->v0);
copyNeighborsRaw(DIM,chunkMask,0,1,currentChunk->u0);
copyNeighborsRaw(DIM,chunkMask,0,2,currentChunk->v0);
}
//samples u0, v0
//sets u0
//these should have just been mirrored in the above
//
//Perform main projection solver
for(int l = 0; l < LINEARSOLVERTIMES; l++){
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
chunkJRaw = currentChunk->jchunk;
chunkMask = currentChunk->chunkMask;
jd = currentChunk->jd;
jd0 = currentChunk->jd0;
u = currentChunk->ju;
v = currentChunk->jv;
w = currentChunk->jw;
u0 = currentChunk->ju0;
v0 = currentChunk->jv0;
w0 = currentChunk->jw0;
Java_electrosphere_FluidSim_solveProjection(DIM,chunkMask,currentChunk->u,currentChunk->v,currentChunk->w,currentChunk->u0,currentChunk->v0,currentChunk->w0,DIFFUSION_CONSTANT,VISCOSITY_CONSTANT,timestep);
}
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
chunkJRaw = currentChunk->jchunk;
chunkMask = currentChunk->chunkMask;
jd = currentChunk->jd;
jd0 = currentChunk->jd0;
u = currentChunk->ju;
v = currentChunk->jv;
w = currentChunk->jw;
u0 = currentChunk->ju0;
v0 = currentChunk->jv0;
w0 = currentChunk->jw0;
setBoundsToNeighborsRaw(DIM,chunkMask,1,currentChunk->u0);
copyNeighborsRaw(DIM,chunkMask,0,1,currentChunk->u0);
}
}
//samples u,v,w,u0
//sets u,v,w
//Finalize projection
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
chunkJRaw = currentChunk->jchunk;
chunkMask = currentChunk->chunkMask;
jd = currentChunk->jd;
jd0 = currentChunk->jd0;
u = currentChunk->ju;
v = currentChunk->jv;
w = currentChunk->jw;
u0 = currentChunk->ju0;
v0 = currentChunk->jv0;
w0 = currentChunk->jw0;
Java_electrosphere_FluidSim_finalizeProjection(DIM,chunkMask,currentChunk->u,currentChunk->v,currentChunk->w,currentChunk->u0,currentChunk->v0,currentChunk->w0,DIFFUSION_CONSTANT,VISCOSITY_CONSTANT,timestep);
}
//set boundaries a final time for u,v,w
//...
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
chunkJRaw = currentChunk->jchunk;
chunkMask = currentChunk->chunkMask;
jd = currentChunk->jd;
jd0 = currentChunk->jd0;
u = currentChunk->ju;
v = currentChunk->jv;
w = currentChunk->jw;
u0 = currentChunk->ju0;
v0 = currentChunk->jv0;
w0 = currentChunk->jw0;
setBoundsToNeighborsRaw(DIM,chunkMask,1,currentChunk->u);
setBoundsToNeighborsRaw(DIM,chunkMask,2,currentChunk->v);
setBoundsToNeighborsRaw(DIM,chunkMask,3,currentChunk->w);
setBoundsToNeighborsRaw(DIM,chunkMask,1,currentChunk->u0);
setBoundsToNeighborsRaw(DIM,chunkMask,2,currentChunk->v0);
setBoundsToNeighborsRaw(DIM,chunkMask,3,currentChunk->w0);
copyNeighborsRaw(DIM,chunkMask,0,1,currentChunk->u);
copyNeighborsRaw(DIM,chunkMask,0,2,currentChunk->v);
copyNeighborsRaw(DIM,chunkMask,0,3,currentChunk->w);
copyNeighborsRaw(DIM,chunkMask,0,1,currentChunk->u0);
copyNeighborsRaw(DIM,chunkMask,0,2,currentChunk->v0);
copyNeighborsRaw(DIM,chunkMask,0,3,currentChunk->w0);
}
}
///------------------------------------------------------------------------------------------------------------------------------------------------------------------------
///------------------------------------------------------------------------------------------------------------------------------------------------------------------------
///------------------------------------------------------------------------------------------------------------------------------------------------------------------------
///------------------------------------------------------------------------------------------------------------------------------------------------------------------------
///------------------------------------------------------------------------------------------------------------------------------------------------------------------------
//add density
{
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
chunkJRaw = currentChunk->jchunk;
chunkMask = currentChunk->chunkMask;
Java_electrosphere_FluidSim_addDensity(DIM,chunkMask,currentChunk->d,currentChunk->d0,timestep);
}
}
//swap all density arrays
{
//swap vector fields
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
float * tmpArr;
for(int j = 0; j < 27; j++){
tmpArr = currentChunk->d[j];
currentChunk->d[j] = currentChunk->d0[j];
currentChunk->d0[j] = tmpArr;
}
}
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
chunkJRaw = currentChunk->jchunk;
chunkMask = currentChunk->chunkMask;
jd = currentChunk->jd;
jd0 = currentChunk->jd0;
copyNeighborsRaw(DIM,chunkMask,0,0,currentChunk->d);
copyNeighborsRaw(DIM,chunkMask,0,0,currentChunk->d0);
}
}
//diffuse density
{
for(int l = 0; l < LINEARSOLVERTIMES; l++){
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
chunkJRaw = currentChunk->jchunk;
chunkMask = currentChunk->chunkMask;
u = currentChunk->ju;
v = currentChunk->jv;
w = currentChunk->jw;
Java_electrosphere_FluidSim_solveDiffuseDensity(DIM,chunkMask,currentChunk->d,currentChunk->d0,currentChunk->u,currentChunk->v,currentChunk->w,DIFFUSION_CONSTANT,VISCOSITY_CONSTANT,timestep);
}
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
chunkJRaw = currentChunk->jchunk;
chunkMask = currentChunk->chunkMask;
setBoundsToNeighborsRaw(DIM,chunkMask,0,currentChunk->d);
}
}
}
//swap all density arrays
{
//swap vector fields
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
float * tmpArr;
for(int j = 0; j < 27; j++){
tmpArr = currentChunk->d[j];
currentChunk->d[j] = currentChunk->d0[j];
currentChunk->d0[j] = tmpArr;
}
}
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
chunkJRaw = currentChunk->jchunk;
chunkMask = currentChunk->chunkMask;
copyNeighborsRaw(DIM,chunkMask,0,0,currentChunk->d);
copyNeighborsRaw(DIM,chunkMask,0,0,currentChunk->d0);
}
}
//advect density
{
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
chunkJRaw = currentChunk->jchunk;
chunkMask = currentChunk->chunkMask;
Java_electrosphere_FluidSim_advectDensity(DIM,chunkMask,currentChunk->d,currentChunk->d0,currentChunk->u,currentChunk->v,currentChunk->w,DIFFUSION_CONSTANT,VISCOSITY_CONSTANT,timestep);
}
}
//mirror densities
{
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
chunkJRaw = currentChunk->jchunk;
chunkMask = currentChunk->chunkMask;
setBoundsToNeighborsRaw(DIM,chunkMask,0,currentChunk->d);
}
}
}

View File

@ -16,46 +16,14 @@ extern "C" {
#undef electrosphere_FluidSim_LINEARSOLVERTIMES
#define electrosphere_FluidSim_LINEARSOLVERTIMES 20L
#undef electrosphere_FluidSim_GRAVITY
#define electrosphere_FluidSim_GRAVITY 0.0f
#define electrosphere_FluidSim_GRAVITY -100.0f
/*
* Class: electrosphere_FluidSim
* Method: createThreadpool
* Signature: (I)J
* Method: simulate
* Signature: (Ljava/util/List;F)V
*/
JNIEXPORT jlong JNICALL Java_electrosphere_FluidSim_createThreadpool
(JNIEnv *, jclass, jint);
/*
* Class: electrosphere_FluidSim
* Method: unlockThreads
* Signature: (J)J
*/
JNIEXPORT jlong JNICALL Java_electrosphere_FluidSim_unlockThreads
(JNIEnv *, jclass, jlong);
/*
* Class: electrosphere_FluidSim
* Method: queueChunk
* Signature: (JII[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_queueChunk
(JNIEnv *, jclass, jlong, jint, jint, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jfloat, jfloat, jfloat);
/*
* Class: electrosphere_FluidSim
* Method: submitWork
* Signature: (J)V
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_submitWork
(JNIEnv *, jclass, jlong);
/*
* Class: electrosphere_FluidSim
* Method: fetchWork
* Signature: (J)V
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_fetchWork
(JNIEnv *, jclass, jlong);
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_simulate
(JNIEnv *, jclass, jobject, jfloat);
#ifdef __cplusplus
}

View File

@ -1,16 +0,0 @@
//include guard
#ifndef LIB_FLUID_SIM
#define LIB_FLUID_SIM
#include "./threadpool.h"
void simulate(LibraryContext * context, int threadIndex);
void addDensity(int N, int chunk_mask, float * jrx, float * x0, float dt);
void diffuseDensity(int N, int chunk_mask, float * jrx, float * jrx0, float DIFFUSION_CONST, float VISCOSITY_CONST, float dt);
void advectDensity(uint32_t chunk_mask, int N, float * jrd, float * jrd0, float * u, float * v, float * w, float dt);
//close include guard
#endif

View File

@ -0,0 +1,101 @@
#ifndef MAINFUNC
#define MAINFUNC
#include <jni.h>
/*
* Class: electrosphere_FluidSim
* Method: calculateChunkMask
* Signature: ([Ljava/nio/ByteBuffer;)I
*/
JNIEXPORT jint JNICALL Java_electrosphere_FluidSim_calculateChunkMask
(JNIEnv *, jobject, jobjectArray);
/*
* Class: electrosphere_FluidSim
* Method: addSourceToVectors
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
void Java_electrosphere_FluidSim_addSourceToVectors
(int, int, float **, float **, float **, float **, float **, float **, float, float, float);
/*
* Class: electrosphere_FluidSim
* Method: solveVectorDiffuse
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
void Java_electrosphere_FluidSim_solveVectorDiffuse
(int, int, float **, float **, float **, float **, float **, float **, float, float, float);
/*
* Class: electrosphere_FluidSim
* Method: setupProjection
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
void Java_electrosphere_FluidSim_setupProjection
(int, int, float **, float **, float **, float **, float **, float **, float, float, float);
/*
* Class: electrosphere_FluidSim
* Method: solveProjection
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
void Java_electrosphere_FluidSim_solveProjection
(int, int, float **, float **, float **, float **, float **, float **, float, float, float);
/*
* Class: electrosphere_FluidSim
* Method: finalizeProjection
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
void Java_electrosphere_FluidSim_finalizeProjection
(int, int, float **, float **, float **, float **, float **, float **, float, float, float);
/*
* Class: electrosphere_FluidSim
* Method: advectVectors
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
void Java_electrosphere_FluidSim_advectVectors
(int, int, float **, float **, float **, float **, float **, float **, float, float, float);
/*
* Class: electrosphere_FluidSim
* Method: addDensity
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;F)V
*/
void Java_electrosphere_FluidSim_addDensity
(int, int, float **, float **, float);
/*
* Class: electrosphere_FluidSim
* Method: solveDiffuseDensity
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
void Java_electrosphere_FluidSim_solveDiffuseDensity
(int, int, float **, float **, float **, float **, float **, float, float, float);
/*
* Class: electrosphere_FluidSim
* Method: advectDensity
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
void Java_electrosphere_FluidSim_advectDensity
(int, int, float **, float **, float **, float **, float **, float, float, float);
void setBoundsToNeighborsRaw
(
int N,
int chunk_mask,
int vector_dir,
float ** neighborArray);
void copyNeighborsRaw
(
int N,
int chunk_mask,
int cx,
int vector_dir,
float ** neighborArray);
#endif

View File

@ -1,48 +0,0 @@
#ifndef THREADPOOL
#define THREADPOOL
#include <pthread.h>
/**
* A threadpool used to distribute work
*/
typedef struct {
int numThreads;
pthread_t * threads;
pthread_barrier_t * barrierMain;
pthread_barrier_t * barrierWithParentThread;
} ThreadPool;
/**
* A single chunk to have fluid simulated
*/
typedef struct {
int chunkMask;
float timestep;
float * d;
float * u;
float * v;
float * w;
float * d0;
float * u0;
float * v0;
float * w0;
float diffuseConst;
float viscosityConst;
} Chunk;
/**
* Overall state of the whole application
*/
typedef struct {
ThreadPool * threadpool;
Chunk * chunks;
int numChunks;
} LibraryContext;
#endif

View File

@ -4,19 +4,11 @@
#ifndef UTILITIES_H
#define UTILITIES_H
//swaps where two pointers are pointing
#define SWAP(x0,x) {float *tmp=x0;x0=x;x=tmp;}
//gets the index of a 3d point in an N^3 array
#define IX(i,j,k) ((i)+(N)*(j)+(N*N)*(k))
//gets the index of a 3d point in a 3^3 array
#define CK(m,n,o) ((m)+(n)*(3)+(o)*(3)*(3))
//gets the raw array of a java buffer
#define GET_ARR(env,src,i) (*env)->GetDirectBufferAddress(env,(*env)->GetObjectArrayElement(env,src,i))
//returns true if the array exists, false otherwise
#define GET_ARR_RAW(env,src,i) src[i]
#define ARR_EXISTS(chunk_mask,m,n,o) (chunk_mask & CHUNK_INDEX_ARR[CK(m,n,o)]) > 0
#endif

@ -1 +0,0 @@
Subproject commit ae721c50eaf761660b4f90cc590453cdb0c2acd0

View File

@ -1,77 +0,0 @@
#include <jni.h>
#include <stdio.h>
#include <immintrin.h>
#include <stdint.h>
#include <unistd.h>
#include <pthread.h>
#include <semaphore.h>
//git libs
#include "../lib/stb/stb_ds.h"
//all other headers
#include "../includes/libfluidsim.h"
#include "../includes/threadpool.h"
#include "../includes/chunkmask.h"
#include "../includes/utilities.h"
#define DIM 18
#define LINEARSOLVERTIMES 20
//call this if the child threads need to wait on one another
void sync(LibraryContext * context){
pthread_barrier_wait(context->threadpool->barrierMain);
}
/**
* Main simulation function
*/
void simulate(LibraryContext * context, int threadIndex){
int numThreads = context->threadpool->numThreads;
int numChunks = context->numChunks;
//add densities to chunks
for(int i = threadIndex; i < numChunks; i = i + numThreads){
Chunk chunk = context->chunks[i];
addDensity(DIM,chunk.chunkMask,chunk.d,chunk.d0,chunk.timestep);
}
sync(context);
//diffuse density
for(int l = 0; l < LINEARSOLVERTIMES; l++){
for(int i = threadIndex; i < numChunks; i = i + numThreads){
Chunk chunk = context->chunks[i];
SWAP(chunk.d,chunk.d0);
diffuseDensity(
DIM,
chunk.chunkMask,
chunk.d,
chunk.d0,
chunk.diffuseConst,
chunk.viscosityConst,
chunk.timestep
);
SWAP(chunk.d,chunk.d0);
}
sync(context);
}
//advect density
for(int i = threadIndex; i < numChunks; i = i + numThreads){
Chunk chunk = context->chunks[i];
advectDensity(
chunk.chunkMask,
DIM,
chunk.d,
chunk.d0,
chunk.u,
chunk.v,
chunk.w,
chunk.timestep
);
}
//call this if the child threads need to wait on one another
sync(context);
}

View File

@ -1,222 +0,0 @@
#include <jni.h>
#include <stdio.h>
#include <immintrin.h>
#include <stdint.h>
#include <unistd.h>
#include <pthread.h>
#include <semaphore.h>
//include stb ds
#define STB_DS_IMPLEMENTATION
#include "../lib/stb/stb_ds.h"
//all other headers
#include "../includes/libfluidsim.h"
#include "../includes/threadpool.h"
#include "../includes/chunkmask.h"
#include "../includes/utilities.h"
typedef struct {
LibraryContext * libraryContext;
int threadIndex; //the index for this thread in all threadpool objects
} ThreadData;
/**
* Main loops for the thread
*/
void * mainThreadLoop(void * data);
/*
* Class: electrosphere_FluidSim
* Method: createThreadpool
* Signature: (I)J
*/
JNIEXPORT jlong JNICALL Java_electrosphere_FluidSim_createThreadpool
(JNIEnv * env,
jclass class,
jint numThreads){
LibraryContext * libraryContext = (LibraryContext *)malloc(sizeof(LibraryContext));
libraryContext->numChunks = 0;
libraryContext->chunks = NULL; //must be tied to NULL at the start
//init threadpool
libraryContext->threadpool = (ThreadPool *)malloc(sizeof(ThreadPool));
ThreadPool * pool = libraryContext->threadpool;
pool->threads = (pthread_t *)malloc(sizeof(pthread_t) * numThreads);
pool->numThreads = numThreads;
//used for storing return codes from pthread calls
int retCode = 0;
//
//create thread barriers
printf("Creating barrier for %d threads\n",pool->numThreads);
pool->barrierMain = (pthread_barrier_t *)malloc(sizeof(pthread_barrier_t));
retCode = pthread_barrier_init(pool->barrierMain,NULL,pool->numThreads);
if(retCode != 0){
printf("Failed to create main barrier! %d\n",retCode);
}
//+1 is for the main thread
printf("Creating barrier for %d threads\n",pool->numThreads+1);
pool->barrierWithParentThread = (pthread_barrier_t *)malloc(sizeof(pthread_barrier_t));
retCode = pthread_barrier_init(pool->barrierWithParentThread,NULL,(pool->numThreads)+1);
if(retCode != 0){
printf("Failed to create barrier with main thread! %d\n",retCode);
}
//start threads
for(int i = 0; i < pool->numThreads; i++){
//create data to be sent to thread
ThreadData * threadData = (ThreadData *)malloc(sizeof(ThreadData));
threadData->libraryContext = libraryContext;
threadData->threadIndex = i;
//create thread
retCode = pthread_create(&pool->threads[i], NULL, mainThreadLoop, threadData);
if(retCode != 0){
printf("Failed to create thread!~ %d\n",retCode);
}
}
printf("Finished creating threads\n");
return (jlong)libraryContext;
}
/*
* Debug function
*/
JNIEXPORT jlong JNICALL Java_electrosphere_FluidSim_unlockThreads(
JNIEnv * env,
jclass class,
jlong threadPoolPtrRaw){
LibraryContext * libraryContext = (LibraryContext *)threadPoolPtrRaw;
pthread_barrier_wait(libraryContext->threadpool->barrierWithParentThread);
}
/*
* Queues a single chunk to do work
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_queueChunk(
JNIEnv * env,
jclass class,
jlong libraryContextPtr,
jint DIM,
jint chunkMask,
jobjectArray dr,
jobjectArray d0r,
jobjectArray ur,
jobjectArray vr,
jobjectArray wr,
jobjectArray u0r,
jobjectArray v0r,
jobjectArray w0r,
jfloat DIFFUSION_CONSTANT,
jfloat VISCOSITY_CONSTANT,
jfloat timestep){
LibraryContext * libraryContext = (LibraryContext *)libraryContextPtr;
//if the array is full, malloc a new chunk, otherwise overwrite an existing one
int arrayCapacity = stbds_arrlen(libraryContext->chunks);
if(libraryContext->numChunks >= arrayCapacity){
Chunk * newChunk = (Chunk *)malloc(sizeof(Chunk));
newChunk->chunkMask = chunkMask;
newChunk->u = GET_ARR(env,ur,CENTER_LOC);
newChunk->v = GET_ARR(env,vr,CENTER_LOC);
newChunk->w = GET_ARR(env,wr,CENTER_LOC);
newChunk->u0 = GET_ARR(env,u0r,CENTER_LOC);
newChunk->v0 = GET_ARR(env,v0r,CENTER_LOC);
newChunk->w0 = GET_ARR(env,w0r,CENTER_LOC);
newChunk->d = GET_ARR(env,dr,CENTER_LOC);
newChunk->d0 = GET_ARR(env,d0r,CENTER_LOC);
newChunk->timestep = timestep;
newChunk->diffuseConst = DIFFUSION_CONSTANT;
newChunk->viscosityConst = VISCOSITY_CONSTANT;
stbds_arrput(libraryContext->chunks,newChunk[0]);
} else {
Chunk * currentChunk = &libraryContext->chunks[libraryContext->numChunks];
currentChunk->chunkMask = chunkMask;
currentChunk->u = GET_ARR(env,ur,CENTER_LOC);
currentChunk->v = GET_ARR(env,vr,CENTER_LOC);
currentChunk->w = GET_ARR(env,wr,CENTER_LOC);
currentChunk->u0 = GET_ARR(env,u0r,CENTER_LOC);
currentChunk->v0 = GET_ARR(env,v0r,CENTER_LOC);
currentChunk->w0 = GET_ARR(env,w0r,CENTER_LOC);
currentChunk->d = GET_ARR(env,dr,CENTER_LOC);
currentChunk->d0 = GET_ARR(env,d0r,CENTER_LOC);
currentChunk->timestep = timestep;
currentChunk->diffuseConst = DIFFUSION_CONSTANT;
currentChunk->viscosityConst = VISCOSITY_CONSTANT;
}
libraryContext->numChunks++;
}
/*
* Submits a request to the threadpool to do all the simulation
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_submitWork(
JNIEnv * env,
jclass class,
jlong contextPtr
){
LibraryContext * libraryContext = (LibraryContext *)contextPtr;
//begin work
//wait to begin work until parent signals its ready
pthread_barrier_wait(libraryContext->threadpool->barrierWithParentThread);
}
/*
* blocks until the simulation finishes, then grabs the results of the sim
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_fetchWork(
JNIEnv * env,
jclass class,
jlong contextPtr
){
LibraryContext * libraryContext = (LibraryContext *)contextPtr;
//Roll threads over to the beginning of the workflow again, meanwhile do main thread cleanup work
pthread_barrier_wait(libraryContext->threadpool->barrierWithParentThread);
//main thread does work to setup child chunks for receiving data here
libraryContext->numChunks = 0;
}
/**
* Main loop for threads
*/
void * mainThreadLoop(void * dataRaw){
ThreadData * threadData = (ThreadData *)dataRaw;
LibraryContext * libraryContext = threadData->libraryContext;
int threadIndex = threadData->threadIndex;
//main thread loop
int running = 1;
while(running==1){
//begin work
//wait to begin work until parent signals its ready
pthread_barrier_wait(libraryContext->threadpool->barrierWithParentThread);
//do main work
simulate(libraryContext,threadData->threadIndex);
//finalize work
//the parent thread needs to call the barrier as well with whatever method it uses to grab data from the sim back to java
pthread_barrier_wait(libraryContext->threadpool->barrierWithParentThread);
}
}

View File

@ -1,11 +1,9 @@
#include <jni.h>
#include <stdio.h>
#include <immintrin.h>
#include <stdint.h>
#include "../includes/libfluidsim.h"
#include "../includes/utilities.h"
#include "../includes/chunkmask.h"
#include "includes/utilities.h"
#include "includes/chunkmask.h"
#define BOUND_NO_DIR 0
@ -17,29 +15,28 @@
#define SET_BOUND_USE_NEIGHBOR 1
void add_source(int N, float * x, float * s, float dt);
void advect(JNIEnv * env, uint32_t chunk_mask, int N, int b, jobjectArray jrd, jobjectArray jrd0, float * u, float * v, float * w, float dt);
void advect(uint32_t chunk_mask, int N, int b, float ** jrd, float ** jrd0, float * u, float * v, float * w, float dt);
/*
* Adds force to all vectors
*/
void addSourceToVectors
(JNIEnv * env,
jobject this,
jint N,
jint chunk_mask,
jobjectArray jru,
jobjectArray jrv,
jobjectArray jrw,
jobjectArray jru0,
jobjectArray jrv0,
jobjectArray jrw0,
jfloat DIFFUSION_CONST,
jfloat VISCOSITY_CONST,
jfloat dt){
add_source(N,GET_ARR(env,jru,CENTER_LOC),GET_ARR(env,jru0,CENTER_LOC),dt);
add_source(N,GET_ARR(env,jrv,CENTER_LOC),GET_ARR(env,jrv0,CENTER_LOC),dt);
add_source(N,GET_ARR(env,jrw,CENTER_LOC),GET_ARR(env,jrw0,CENTER_LOC),dt);
void Java_electrosphere_FluidSim_addSourceToVectors
(
int N,
int chunk_mask,
float ** jru,
float ** jrv,
float ** jrw,
float ** jru0,
float ** jrv0,
float ** jrw0,
float DIFFUSION_CONST,
float VISCOSITY_CONST,
float dt){
add_source(N,GET_ARR_RAW(env,jru,CENTER_LOC),GET_ARR_RAW(env,jru0,CENTER_LOC),dt);
add_source(N,GET_ARR_RAW(env,jrv,CENTER_LOC),GET_ARR_RAW(env,jrv0,CENTER_LOC),dt);
add_source(N,GET_ARR_RAW(env,jrw,CENTER_LOC),GET_ARR_RAW(env,jrw0,CENTER_LOC),dt);
}
void add_source(int N, float * x, float * s, float dt){
@ -53,29 +50,28 @@ void add_source(int N, float * x, float * s, float dt){
/*
* Solves vector diffusion along all axis
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_solveVectorDiffuse
(JNIEnv * env,
jobject this,
jint N,
jint chunk_mask,
jobjectArray jru,
jobjectArray jrv,
jobjectArray jrw,
jobjectArray jru0,
jobjectArray jrv0,
jobjectArray jrw0,
jfloat DIFFUSION_CONST,
jfloat VISCOSITY_CONST,
jfloat dt){
void Java_electrosphere_FluidSim_solveVectorDiffuse
(
int N,
int chunk_mask,
float ** jru,
float ** jrv,
float ** jrw,
float ** jru0,
float ** jrv0,
float ** jrw0,
float DIFFUSION_CONST,
float VISCOSITY_CONST,
float dt){
float a=dt*VISCOSITY_CONST*N*N*N;
float c=1+6*a;
int i, j, k, l, m;
float * u = GET_ARR(env,jru,CENTER_LOC);
float * v = GET_ARR(env,jrv,CENTER_LOC);
float * w = GET_ARR(env,jrw,CENTER_LOC);
float * u0 = GET_ARR(env,jru0,CENTER_LOC);
float * v0 = GET_ARR(env,jrv0,CENTER_LOC);
float * w0 = GET_ARR(env,jrw0,CENTER_LOC);
float * u = GET_ARR_RAW(env,jru,CENTER_LOC);
float * v = GET_ARR_RAW(env,jrv,CENTER_LOC);
float * w = GET_ARR_RAW(env,jrw,CENTER_LOC);
float * u0 = GET_ARR_RAW(env,jru0,CENTER_LOC);
float * v0 = GET_ARR_RAW(env,jrv0,CENTER_LOC);
float * w0 = GET_ARR_RAW(env,jrw0,CENTER_LOC);
__m256 aScalar = _mm256_set1_ps(a);
__m256 cScalar = _mm256_set1_ps(c);
@ -162,20 +158,19 @@ JNIEXPORT void JNICALL Java_electrosphere_FluidSim_solveVectorDiffuse
/*
* Sets up a projection system of equations
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_setupProjection
(JNIEnv * env,
jobject this,
jint N,
jint chunk_mask,
jobjectArray jru,
jobjectArray jrv,
jobjectArray jrw,
jobjectArray jru0,
jobjectArray jrv0,
jobjectArray jrw0,
jfloat DIFFUSION_CONST,
jfloat VISCOSITY_CONST,
jfloat dt){
void Java_electrosphere_FluidSim_setupProjection
(
int N,
int chunk_mask,
float ** jru,
float ** jrv,
float ** jrw,
float ** jru0,
float ** jrv0,
float ** jrw0,
float DIFFUSION_CONST,
float VISCOSITY_CONST,
float dt){
int i, j, k;
__m256 xVector = _mm256_set1_ps(N);
@ -185,12 +180,12 @@ JNIEXPORT void JNICALL Java_electrosphere_FluidSim_setupProjection
__m256 zeroVec = _mm256_set1_ps(0);
__m256 vector, vector2, vector3;
float * u = GET_ARR(env,jru,CENTER_LOC);
float * v = GET_ARR(env,jrv,CENTER_LOC);
float * w = GET_ARR(env,jrw,CENTER_LOC);
float * u = GET_ARR_RAW(env,jru,CENTER_LOC);
float * v = GET_ARR_RAW(env,jrv,CENTER_LOC);
float * w = GET_ARR_RAW(env,jrw,CENTER_LOC);
float * p = GET_ARR(env,jru0,CENTER_LOC);
float * div = GET_ARR(env,jrv0,CENTER_LOC);
float * p = GET_ARR_RAW(env,jru0,CENTER_LOC);
float * div = GET_ARR_RAW(env,jrv0,CENTER_LOC);
float scalar = 1.0/3.0;
float h = 1.0/N;
@ -257,28 +252,27 @@ JNIEXPORT void JNICALL Java_electrosphere_FluidSim_setupProjection
/*
* Solves a projection system of equations
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_solveProjection
(JNIEnv * env,
jobject this,
jint N,
jint chunk_mask,
jobjectArray jru,
jobjectArray jrv,
jobjectArray jrw,
jobjectArray jru0,
jobjectArray jrv0,
jobjectArray jrw0,
jfloat DIFFUSION_CONST,
jfloat VISCOSITY_CONST,
jfloat dt){
void Java_electrosphere_FluidSim_solveProjection
(
int N,
int chunk_mask,
float ** jru,
float ** jrv,
float ** jrw,
float ** jru0,
float ** jrv0,
float ** jrw0,
float DIFFUSION_CONST,
float VISCOSITY_CONST,
float dt){
int a = 1;
int c = 6;
int i, j, k, l, m;
__m256 aScalar = _mm256_set1_ps(a);
__m256 cScalar = _mm256_set1_ps(c);
float * p = GET_ARR(env,jru0,CENTER_LOC);
float * div = GET_ARR(env,jrv0,CENTER_LOC);
float * p = GET_ARR_RAW(env,jru0,CENTER_LOC);
float * div = GET_ARR_RAW(env,jrv0,CENTER_LOC);
// update for each cell
for(k=1; k<N-1; k++){
for(j=1; j<N-1; j++){
@ -312,20 +306,19 @@ JNIEXPORT void JNICALL Java_electrosphere_FluidSim_solveProjection
/*
* Finalizes a projection (subtract curl, set bounds, etc)
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_finalizeProjection
(JNIEnv * env,
jobject this,
jint N,
jint chunk_mask,
jobjectArray jru,
jobjectArray jrv,
jobjectArray jrw,
jobjectArray jru0,
jobjectArray jrv0,
jobjectArray jrw0,
jfloat DIFFUSION_CONST,
jfloat VISCOSITY_CONST,
jfloat dt){
void Java_electrosphere_FluidSim_finalizeProjection
(
int N,
int chunk_mask,
float ** jru,
float ** jrv,
float ** jrw,
float ** jru0,
float ** jrv0,
float ** jrw0,
float DIFFUSION_CONST,
float VISCOSITY_CONST,
float dt){
int i, j, k;
// __m256 constScalar = _mm256_set1_ps(0.5f*N);
__m256 xScalar = _mm256_set1_ps(0.5*N);
@ -333,12 +326,12 @@ JNIEXPORT void JNICALL Java_electrosphere_FluidSim_finalizeProjection
__m256 zScalar = _mm256_set1_ps(0.5*N);
__m256 vector, vector2, vector3;
float * u = GET_ARR(env,jru,CENTER_LOC);
float * v = GET_ARR(env,jrv,CENTER_LOC);
float * w = GET_ARR(env,jrw,CENTER_LOC);
float * u = GET_ARR_RAW(env,jru,CENTER_LOC);
float * v = GET_ARR_RAW(env,jrv,CENTER_LOC);
float * w = GET_ARR_RAW(env,jrw,CENTER_LOC);
float * p = GET_ARR(env,jru0,CENTER_LOC);
float * div = GET_ARR(env,jrv0,CENTER_LOC);
float * p = GET_ARR_RAW(env,jru0,CENTER_LOC);
float * div = GET_ARR_RAW(env,jrv0,CENTER_LOC);
float h = 1.0 / N;
@ -407,41 +400,40 @@ JNIEXPORT void JNICALL Java_electrosphere_FluidSim_finalizeProjection
/*
* Advects u, v, and w
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_advectVectors
(JNIEnv * env,
jobject this,
jint N,
jint chunk_mask,
jobjectArray jru,
jobjectArray jrv,
jobjectArray jrw,
jobjectArray jru0,
jobjectArray jrv0,
jobjectArray jrw0,
jfloat DIFFUSION_CONST,
jfloat VISCOSITY_CONST,
jfloat dt){
advect(env,chunk_mask,N,1,jru,jru0,GET_ARR(env,jru0,CENTER_LOC),GET_ARR(env,jrv0,CENTER_LOC),GET_ARR(env,jrw0,CENTER_LOC),dt);
advect(env,chunk_mask,N,2,jrv,jrv0,GET_ARR(env,jru0,CENTER_LOC),GET_ARR(env,jrv0,CENTER_LOC),GET_ARR(env,jrw0,CENTER_LOC),dt);
advect(env,chunk_mask,N,3,jrw,jrw0,GET_ARR(env,jru0,CENTER_LOC),GET_ARR(env,jrv0,CENTER_LOC),GET_ARR(env,jrw0,CENTER_LOC),dt);
void Java_electrosphere_FluidSim_advectVectors
(
int N,
int chunk_mask,
float ** jru,
float ** jrv,
float ** jrw,
float ** jru0,
float ** jrv0,
float ** jrw0,
float DIFFUSION_CONST,
float VISCOSITY_CONST,
float dt){
advect(chunk_mask,N,1,jru,jru0,GET_ARR_RAW(env,jru0,CENTER_LOC),GET_ARR_RAW(env,jrv0,CENTER_LOC),GET_ARR_RAW(env,jrw0,CENTER_LOC),dt);
advect(chunk_mask,N,2,jrv,jrv0,GET_ARR_RAW(env,jru0,CENTER_LOC),GET_ARR_RAW(env,jrv0,CENTER_LOC),GET_ARR_RAW(env,jrw0,CENTER_LOC),dt);
advect(chunk_mask,N,3,jrw,jrw0,GET_ARR_RAW(env,jru0,CENTER_LOC),GET_ARR_RAW(env,jrv0,CENTER_LOC),GET_ARR_RAW(env,jrw0,CENTER_LOC),dt);
}
void advect(JNIEnv * env, uint32_t chunk_mask, int N, int b, jobjectArray jrd, jobjectArray jrd0, float * u, float * v, float * w, float dt){
void advect(uint32_t chunk_mask, int N, int b, float ** jrd, float ** jrd0, float * u, float * v, float * w, float dt){
int i, j, k, i0, j0, k0, i1, j1, k1;
int m,n,o;
float x, y, z, s0, t0, s1, t1, u1, u0, dtx,dty,dtz;
dtx=dty=dtz=dt*N;
float * d = GET_ARR(env,jrd,CENTER_LOC);
float * d = GET_ARR_RAW(env,jrd,CENTER_LOC);
float * d0 = GET_ARR(env,jrd0,CENTER_LOC);
float * d0 = GET_ARR_RAW(env,jrd0,CENTER_LOC);
for(k=1; k<N-1; k++){
for(j=1; j<N-1; j++){
for(i=1; i<N-1; i++){
d0 = GET_ARR(env,jrd0,CENTER_LOC);
d0 = GET_ARR_RAW(env,jrd0,CENTER_LOC);
//calculate location to pull from
x = i-dtx*u[IX(i,j,k)];
y = j-dty*v[IX(i,j,k)];
@ -507,7 +499,7 @@ void advect(JNIEnv * env, uint32_t chunk_mask, int N, int b, jobjectArray jrd, j
// printf("Hit other chunk\n");
d0 = GET_ARR(env,jrd0,CK(m,n,o));
d0 = GET_ARR_RAW(env,jrd0,CK(m,n,o));
x = x + CHUNK_NORMALIZE_U[CK(m,n,o)] * (N-2);
// printf("%d => %f\n",m,x);
y = y + CHUNK_NORMALIZE_V[CK(m,n,o)] * (N-2);
@ -669,15 +661,14 @@ void advect(JNIEnv * env, uint32_t chunk_mask, int N, int b, jobjectArray jrd, j
}
}
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_setBoundsToNeighbors
(JNIEnv * env,
jobject this,
jint N,
jint chunk_mask,
jint vector_dir,
jobjectArray neighborArray){
void setBoundsToNeighborsRaw
(
int N,
int chunk_mask,
int vector_dir,
float ** neighborArray){
int DIM = N;
float * target = GET_ARR(env,neighborArray,CENTER_LOC);
float * target = GET_ARR_RAW(env,neighborArray,CENTER_LOC);
float * source;
for(int x=1; x < DIM-1; x++){
for(int y = 1; y < DIM-1; y++){
@ -726,19 +717,19 @@ JNIEXPORT void JNICALL Java_electrosphere_FluidSim_setBoundsToNeighbors
target[IX(DIM-1,DIM-1,DIM-1)] = (float)((target[IX(DIM-1,DIM-1,DIM-2)]+target[IX(DIM-1,DIM-2,DIM-1)]+target[IX(DIM-1,DIM-1,DIM-2)])/3.0);
}
/**
* This exclusively copies neighbors to make sure zeroing out stuff doesn't break sim
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_copyNeighbors
(JNIEnv * env,
jobject this,
jint N,
jint chunk_mask,
jint cx,
jint vector_dir,
jobjectArray neighborArray){
void copyNeighborsRaw
(
int N,
int chunk_mask,
int cx,
int vector_dir,
float ** neighborArray){
int DIM = N;
float * target = GET_ARR(env,neighborArray,CENTER_LOC);
float * target = GET_ARR_RAW(env,neighborArray,CENTER_LOC);
float * source;
@ -747,9 +738,20 @@ JNIEXPORT void JNICALL Java_electrosphere_FluidSim_copyNeighbors
// PLANES
//
//
// __m512 transferVector;// = _mm512_set1_ps(0.5*N);
//__m256 vector = _mm256_loadu_ps(&p[IX(i-1,j,k)]);
//vector = _mm256_add_ps(vector,_mm256_loadu_ps(&p[IX(i+1,j,k)]));
//vector = _mm256_add_ps(vector,_mm256_loadu_ps(&p[IX(i,j-1,k)]));
//_mm256_storeu_ps(&p[IX(i,j,k)],vector);
//__m256
//_mm256_loadu_ps
//_mm256_storeu_ps
if(ARR_EXISTS(chunk_mask,0,1,1)){
source = GET_ARR(env,neighborArray,CK(0,1,1));
source = GET_ARR_RAW(env,neighborArray,CK(0,1,1));
for(int x=1; x < DIM-1; x++){
// transferVector = _mm512_loadu_ps(&source[IX(DIM-2,x,1)]);
// _mm512_storeu_ps(&target[IX(0,x,1)],_mm512_loadu_ps(&source[IX(DIM-2,x,1)]));
for(int y = 1; y < DIM-1; y++){
target[IX(0,x,y)] = source[IX(DIM-2,x,y)];
}
@ -757,8 +759,9 @@ JNIEXPORT void JNICALL Java_electrosphere_FluidSim_copyNeighbors
}
if(ARR_EXISTS(chunk_mask,2,1,1)){
source = GET_ARR(env,neighborArray,CK(2,1,1));
source = GET_ARR_RAW(env,neighborArray,CK(2,1,1));
for(int x=1; x < DIM-1; x++){
// _mm512_storeu_ps(&target[IX(DIM-1,x,1)],_mm512_loadu_ps(&source[IX(1,x,1)]));
for(int y = 1; y < DIM-1; y++){
target[IX(DIM-1,x,y)] = source[IX(1,x,y)];
}
@ -766,7 +769,7 @@ JNIEXPORT void JNICALL Java_electrosphere_FluidSim_copyNeighbors
}
if(ARR_EXISTS(chunk_mask,1,0,1)){
source = GET_ARR(env,neighborArray,CK(1,0,1));
source = GET_ARR_RAW(env,neighborArray,CK(1,0,1));
for(int x=1; x < DIM-1; x++){
for(int y = 1; y < DIM-1; y++){
target[IX(x,0,y)] = source[IX(x,DIM-2,y)];
@ -775,7 +778,7 @@ JNIEXPORT void JNICALL Java_electrosphere_FluidSim_copyNeighbors
}
if(ARR_EXISTS(chunk_mask,1,2,1)){
source = GET_ARR(env,neighborArray,CK(1,2,1));
source = GET_ARR_RAW(env,neighborArray,CK(1,2,1));
for(int x=1; x < DIM-1; x++){
for(int y = 1; y < DIM-1; y++){
target[IX(x,DIM-1,y)] = source[IX(x,1,y)];
@ -784,7 +787,7 @@ JNIEXPORT void JNICALL Java_electrosphere_FluidSim_copyNeighbors
}
if(ARR_EXISTS(chunk_mask,1,1,0)){
source = GET_ARR(env,neighborArray,CK(1,1,0));
source = GET_ARR_RAW(env,neighborArray,CK(1,1,0));
for(int x=1; x < DIM-1; x++){
for(int y = 1; y < DIM-1; y++){
target[IX(x,y,0)] = source[IX(x,y,DIM-2)];
@ -793,7 +796,7 @@ JNIEXPORT void JNICALL Java_electrosphere_FluidSim_copyNeighbors
}
if(ARR_EXISTS(chunk_mask,1,1,2)){
source = GET_ARR(env,neighborArray,CK(1,1,2));
source = GET_ARR_RAW(env,neighborArray,CK(1,1,2));
for(int x=1; x < DIM-1; x++){
for(int y = 1; y < DIM-1; y++){
target[IX(x,y,DIM-1)] = source[IX(x,y,1)];
@ -808,28 +811,28 @@ JNIEXPORT void JNICALL Java_electrosphere_FluidSim_copyNeighbors
//
//
if(ARR_EXISTS(chunk_mask,0,0,1)){
source = GET_ARR(env,neighborArray,CK(0,0,1));
source = GET_ARR_RAW(env,neighborArray,CK(0,0,1));
for(int x=1; x < DIM-1; x++){
target[IX(0,0,x)] = source[IX(DIM-2,DIM-2,x)];
}
}
if(ARR_EXISTS(chunk_mask,2,0,1)){
source = GET_ARR(env,neighborArray,CK(2,0,1));
source = GET_ARR_RAW(env,neighborArray,CK(2,0,1));
for(int x=1; x < DIM-1; x++){
target[IX(DIM-1,0,x)] = source[IX(1,DIM-2,x)];
}
}
if(ARR_EXISTS(chunk_mask,0,2,1)){
source = GET_ARR(env,neighborArray,CK(0,2,1));
source = GET_ARR_RAW(env,neighborArray,CK(0,2,1));
for(int x=1; x < DIM-1; x++){
target[IX(0,DIM-1,x)] = source[IX(DIM-2,1,x)];
}
}
if(ARR_EXISTS(chunk_mask,2,2,1)){
source = GET_ARR(env,neighborArray,CK(2,2,1));
source = GET_ARR_RAW(env,neighborArray,CK(2,2,1));
for(int x=1; x < DIM-1; x++){
target[IX(DIM-1,DIM-1,x)] = source[IX(1,1,x)];
}
@ -839,28 +842,28 @@ JNIEXPORT void JNICALL Java_electrosphere_FluidSim_copyNeighbors
//
if(ARR_EXISTS(chunk_mask,0,1,0)){
source = GET_ARR(env,neighborArray,CK(0,1,0));
source = GET_ARR_RAW(env,neighborArray,CK(0,1,0));
for(int x=1; x < DIM-1; x++){
target[IX(0,x,0)] = source[IX(DIM-2,x,DIM-2)];
}
}
if(ARR_EXISTS(chunk_mask,2,1,0)){
source = GET_ARR(env,neighborArray,CK(2,1,0));
source = GET_ARR_RAW(env,neighborArray,CK(2,1,0));
for(int x=1; x < DIM-1; x++){
target[IX(DIM-1,x,0)] = source[IX(1,x,DIM-2)];
}
}
if(ARR_EXISTS(chunk_mask,0,1,2)){
source = GET_ARR(env,neighborArray,CK(0,1,2));
source = GET_ARR_RAW(env,neighborArray,CK(0,1,2));
for(int x=1; x < DIM-1; x++){
target[IX(0,x,DIM-1)] = source[IX(DIM-2,x,1)];
}
}
if(ARR_EXISTS(chunk_mask,2,1,2)){
source = GET_ARR(env,neighborArray,CK(2,1,2));
source = GET_ARR_RAW(env,neighborArray,CK(2,1,2));
for(int x=1; x < DIM-1; x++){
target[IX(DIM-1,x,DIM-1)] = source[IX(1,x,1)];
}
@ -870,28 +873,28 @@ JNIEXPORT void JNICALL Java_electrosphere_FluidSim_copyNeighbors
//
if(ARR_EXISTS(chunk_mask,1,0,0)){
source = GET_ARR(env,neighborArray,CK(1,0,0));
source = GET_ARR_RAW(env,neighborArray,CK(1,0,0));
for(int x=1; x < DIM-1; x++){
target[IX(x,0,0)] = source[IX(x,DIM-2,DIM-2)];
}
}
if(ARR_EXISTS(chunk_mask,1,2,0)){
source = GET_ARR(env,neighborArray,CK(1,2,0));
source = GET_ARR_RAW(env,neighborArray,CK(1,2,0));
for(int x=1; x < DIM-1; x++){
target[IX(x,DIM-1,0)] = source[IX(x,1,DIM-2)];
}
}
if(ARR_EXISTS(chunk_mask,1,0,2)){
source = GET_ARR(env,neighborArray,CK(1,0,2));
source = GET_ARR_RAW(env,neighborArray,CK(1,0,2));
for(int x=1; x < DIM-1; x++){
target[IX(x,0,DIM-1)] = source[IX(x,DIM-2,1)];
}
}
if(ARR_EXISTS(chunk_mask,1,2,2)){
source = GET_ARR(env,neighborArray,CK(1,2,2));
source = GET_ARR_RAW(env,neighborArray,CK(1,2,2));
for(int x=1; x < DIM-1; x++){
target[IX(x,DIM-1,DIM-1)] = source[IX(x,1,1)];
}
@ -905,22 +908,22 @@ JNIEXPORT void JNICALL Java_electrosphere_FluidSim_copyNeighbors
//
if(ARR_EXISTS(chunk_mask,0,0,0)){
source = GET_ARR(env,neighborArray,CK(0,0,0));
source = GET_ARR_RAW(env,neighborArray,CK(0,0,0));
target[IX(0,0,0)] = source[IX(DIM-2,DIM-2,DIM-2)];
}
if(ARR_EXISTS(chunk_mask,2,0,0)){
source = GET_ARR(env,neighborArray,CK(2,0,0));
source = GET_ARR_RAW(env,neighborArray,CK(2,0,0));
target[IX(DIM-1,0,0)] = source[IX(1,DIM-2,DIM-2)];
}
if(ARR_EXISTS(chunk_mask,0,2,0)){
source = GET_ARR(env,neighborArray,CK(0,2,0));
source = GET_ARR_RAW(env,neighborArray,CK(0,2,0));
target[IX(0,DIM-1,0)] = source[IX(DIM-2,1,DIM-2)];
}
if(ARR_EXISTS(chunk_mask,2,2,0)){
source = GET_ARR(env,neighborArray,CK(2,2,0));
source = GET_ARR_RAW(env,neighborArray,CK(2,2,0));
target[IX(DIM-1,DIM-1,0)] = source[IX(1,1,DIM-2)];
}
@ -928,25 +931,25 @@ JNIEXPORT void JNICALL Java_electrosphere_FluidSim_copyNeighbors
//
if(ARR_EXISTS(chunk_mask,0,0,2)){
source = GET_ARR(env,neighborArray,CK(0,0,2));
source = GET_ARR_RAW(env,neighborArray,CK(0,0,2));
target[IX(0,0,DIM-1)] = source[IX(DIM-2,DIM-2,1)];
}
if(ARR_EXISTS(chunk_mask,2,0,2)){
source = GET_ARR(env,neighborArray,CK(2,0,2));
source = GET_ARR_RAW(env,neighborArray,CK(2,0,2));
target[IX(DIM-1,0,DIM-1)] = source[IX(1,DIM-2,1)];
}
if(ARR_EXISTS(chunk_mask,0,2,2)){
source = GET_ARR(env,neighborArray,CK(0,2,2));
source = GET_ARR_RAW(env,neighborArray,CK(0,2,2));
target[IX(0,DIM-1,DIM-1)] = source[IX(DIM-2,1,1)];
}
if(ARR_EXISTS(chunk_mask,2,2,2)){
source = GET_ARR(env,neighborArray,CK(2,2,2));
source = GET_ARR_RAW(env,neighborArray,CK(2,2,2));
target[IX(DIM-1,DIM-1,DIM-1)] = source[IX(1,1,1)];
}
}
}

View File

@ -15,6 +15,7 @@ import org.joml.Vector2i;
import org.joml.Vector3i;
import org.lwjgl.BufferUtils;
import org.lwjgl.PointerBuffer;
import org.lwjgl.glfw.GLFW;
import org.lwjgl.system.MemoryUtil;
/**
@ -40,21 +41,21 @@ public class FluidSim {
// +-------------+ (2,0,0) +---------------> X
//Buffers that contain density for current frame
ByteBuffer[] density = new ByteBuffer[27];
public ByteBuffer[] density = new ByteBuffer[27];
//Buffers that contain new density to add to the simulation
ByteBuffer[] densityAddition = new ByteBuffer[27];
public ByteBuffer[] densityAddition = new ByteBuffer[27];
//Buffers that contain u vector directions
ByteBuffer[] uVector = new ByteBuffer[27];
public ByteBuffer[] uVector = new ByteBuffer[27];
//Buffers that contain v vector directions
ByteBuffer[] vVector = new ByteBuffer[27];
public ByteBuffer[] vVector = new ByteBuffer[27];
//Buffers that contain w vector directions
ByteBuffer[] wVector = new ByteBuffer[27];
public ByteBuffer[] wVector = new ByteBuffer[27];
//Buffers that contain u vector directions to add to the simulation
ByteBuffer[] uAdditionVector = new ByteBuffer[27];
public ByteBuffer[] uAdditionVector = new ByteBuffer[27];
//Buffers that contain v vector directions to add to the simulation
ByteBuffer[] vAdditionVector = new ByteBuffer[27];
public ByteBuffer[] vAdditionVector = new ByteBuffer[27];
//Buffers that contain w vector directions to add to the simulation
ByteBuffer[] wAdditionVector = new ByteBuffer[27];
public ByteBuffer[] wAdditionVector = new ByteBuffer[27];
//The densities for every voxel for the current frame
float[] densityArrayView = new float[DIM * DIM * DIM];
@ -69,9 +70,7 @@ public class FluidSim {
public float[] v0ArrayView = new float[DIM * DIM * DIM];
float[] w0ArrayView = new float[DIM * DIM * DIM];
int chunkMask = 0;
public static long threadpool;
public int chunkMask = 0;
static final float DIFFUSION_CONSTANT = 0.0f;
@ -79,8 +78,7 @@ public class FluidSim {
static final int LINEARSOLVERTIMES = 20;
static final float GRAVITY = 0.0f;
// static final float GRAVITY = -100f; //<-- original value
static final float GRAVITY = -100f;
public void setup(Vector3i offset){
//allocate buffers for this chunk
@ -157,8 +155,12 @@ public class FluidSim {
}
}
static LinkedList<FluidSim> simArrayList = new LinkedList<FluidSim>();
static int i = 0;
static double time = 0;
static double lastTime = 0;
public static void simChunks(FluidSim[][][] simArray, int step, float timestep){
List<FluidSim> chunksToSim = new LinkedList<FluidSim>();
//
//init data for upcoming frame
for(int x = 0; x < simArray.length; x++){
@ -173,44 +175,25 @@ public class FluidSim {
//
simArray[x][y][z].writeNewStateIntoBuffers();
//
//flag this chunk as being simulated in the upcoming frame
simArrayList.add(simArray[x][y][z]);
// add to queue
//
chunksToSim.add(simArray[x][y][z]);
}
}
}
//for each chunk, send them to C land
for(FluidSim chunk : simArrayList){
queueChunkWrapper(threadpool, chunk, timestep);
lastTime = GLFW.glfwGetTime();
//
//simulate
simulateWrapper(chunksToSim,timestep);
//clock
time = time + (GLFW.glfwGetTime() - lastTime);
i++;
if(i == 100){
System.out.println(time / 100.0 * 1000.0);
}
//call for work to be done
submitWorkWrapper(threadpool);
// //
// //Vector stage
// solveChunkMask(simArray);
// addVectorSources(simArray, timestep);
// swapAllVectorFields(simArray, timestep);
// solveVectorDiffusion(simArray, timestep);
// solveProjection(simArray, step, timestep);
// swapAllVectorFields(simArray, timestep);
// advectVectorsAcrossBoundaries(simArray, timestep);
// solveProjection(simArray, step, timestep);
// //
// //Density stage
// addDensity(simArray, timestep);
// swapAllDensityArrays(simArray, timestep);
// diffuseDensity(simArray, timestep);
// swapAllDensityArrays(simArray, timestep);
// advectDensity(simArray, timestep);
// // mirrorNeighborDensities(simArray, timestep);
//call for work to be done
fetchWorkWrapper(threadpool);
simArrayList.clear();
//
@ -351,620 +334,16 @@ public class FluidSim {
return rVal;
}
// private static void solveChunkMask(FluidSim[][][] simArray){
// for(int x = 0; x < simArray.length; x++){
// for(int y = 0; y < simArray[0].length; y++){
// for(int z = 0; z < simArray[0][0].length; z++){
// simArray[x][y][z].calculateChunkMaskWrapper();
// }
// }
// }
// }
// private static void addVectorSources(FluidSim[][][] simArray, float timestep){
// for(int x = 0; x < simArray.length; x++){
// for(int y = 0; y < simArray[0].length; y++){
// for(int z = 0; z < simArray[0][0].length; z++){
// //Add source to all 3 vectors
// // add_source(N, u, u0, dt);
// // add_source(N, v, v0, dt);
// // add_source(N, w, w0, dt);
// simArray[x][y][z].addSourceToVectorsWrapper(timestep);
// }
// }
// }
// //swap
// //u <=> u0 etc for u, v, and w
// }
// private static void solveVectorDiffusion(FluidSim[][][] simArray, float timestep){
// //samples u,v,w,u0,v0,w0
// //sets u,v,w
// // for(int x = 0; x < simArray.length; x++){
// // for(int y = 0; y < simArray[0].length; y++){
// // for(int z = 0; z < simArray[0][0].length; z++){
// // simArray[x][y][z].copyNeighborsWrapper(1, simArray[x][y][z].uVector);
// // simArray[x][y][z].copyNeighborsWrapper(2, simArray[x][y][z].vVector);
// // simArray[x][y][z].copyNeighborsWrapper(3, simArray[x][y][z].wVector);
// // simArray[x][y][z].copyNeighborsWrapper(1, simArray[x][y][z].uAdditionVector);
// // simArray[x][y][z].copyNeighborsWrapper(2, simArray[x][y][z].vAdditionVector);
// // simArray[x][y][z].copyNeighborsWrapper(3, simArray[x][y][z].wAdditionVector);
// // }
// // }
// // }
// for(int l = 0; l < LINEARSOLVERTIMES; l++){
// for(int x = 0; x < simArray.length; x++){
// for(int y = 0; y < simArray[0].length; y++){
// for(int z = 0; z < simArray[0][0].length; z++){
// //lin_solve(env, chunk_mask, N, b, x, x0, a, 1+6*a);
// //+
// //set_bnd(env, chunk_mask, N, b, x);
// //for u, v, and w all in 1 shot
// simArray[x][y][z].solveVectorDiffuseWrapper(timestep);
// }
// }
// }
// for(int x = 0; x < simArray.length; x++){
// for(int y = 0; y < simArray[0].length; y++){
// for(int z = 0; z < simArray[0][0].length; z++){
// simArray[x][y][z].setBoundsToNeighborsWrapper(1, simArray[x][y][z].uVector);
// simArray[x][y][z].setBoundsToNeighborsWrapper(2, simArray[x][y][z].vVector);
// simArray[x][y][z].setBoundsToNeighborsWrapper(3, simArray[x][y][z].wVector);
// simArray[x][y][z].copyNeighborsWrapper(1, x, simArray[x][y][z].uVector);
// simArray[x][y][z].copyNeighborsWrapper(2, x, simArray[x][y][z].vVector);
// simArray[x][y][z].copyNeighborsWrapper(3, x, simArray[x][y][z].wVector);
// }
// }
// }
// }
// }
// private static void solveProjection(FluidSim[][][] simArray, int step, float timestep){
// //samples u,v,w
// //sets u0,v0
// for(int x = 0; x < simArray.length; x++){
// for(int y = 0; y < simArray[0].length; y++){
// for(int z = 0; z < simArray[0][0].length; z++){
// simArray[x][y][z].setBoundsToNeighborsWrapper(1, simArray[x][y][z].uVector);
// simArray[x][y][z].setBoundsToNeighborsWrapper(2, simArray[x][y][z].vVector);
// simArray[x][y][z].setBoundsToNeighborsWrapper(3, simArray[x][y][z].wVector);
// simArray[x][y][z].setBoundsToNeighborsWrapper(1, simArray[x][y][z].uAdditionVector);
// simArray[x][y][z].setBoundsToNeighborsWrapper(2, simArray[x][y][z].vAdditionVector);
// simArray[x][y][z].copyNeighborsWrapper(1, x, simArray[x][y][z].uVector);
// simArray[x][y][z].copyNeighborsWrapper(2, x, simArray[x][y][z].vVector);
// simArray[x][y][z].copyNeighborsWrapper(3, x, simArray[x][y][z].wVector);
// simArray[x][y][z].copyNeighborsWrapper(1, x, simArray[x][y][z].uAdditionVector);
// simArray[x][y][z].copyNeighborsWrapper(2, x, simArray[x][y][z].vAdditionVector);
// }
// }
// }
// for(int x = 0; x < simArray.length; x++){
// for(int y = 0; y < simArray[0].length; y++){
// for(int z = 0; z < simArray[0][0].length; z++){
// // System.out.println("Setup " + x + " " + y + " " + z);
// //setup projection across boundaries
// //...
// //set boundaries appropriately
// //...
// simArray[x][y][z].setupProjectionWrapper(timestep);
// }
// }
// }
// for(int x = 0; x < simArray.length; x++){
// for(int y = 0; y < simArray[0].length; y++){
// for(int z = 0; z < simArray[0][0].length; z++){
// simArray[x][y][z].setBoundsToNeighborsWrapper(0, simArray[x][y][z].uAdditionVector);
// simArray[x][y][z].setBoundsToNeighborsWrapper(0, simArray[x][y][z].vAdditionVector);
// simArray[x][y][z].copyNeighborsWrapper(0, x, simArray[x][y][z].uAdditionVector);
// simArray[x][y][z].copyNeighborsWrapper(0, x, simArray[x][y][z].vAdditionVector);
// }
// }
// }
// //samples u0, v0
// //sets u0
// //these should have just been mirrored in the above
// //
// //Perform main projection solver
// for(int l = 0; l < LINEARSOLVERTIMES; l++){
// for(int x = 0; x < simArray.length; x++){
// for(int y = 0; y < simArray[0].length; y++){
// for(int z = 0; z < simArray[0][0].length; z++){
// //lin_solve(env, chunk_mask, N, b, x, x0, a, 1+6*a);
// //for u, v, and w all in 1 shot
// simArray[x][y][z].solveProjectionWrapper(timestep);
// }
// }
// }
// //be sure to set boundaries to neighbor chunk values where appropriate
// for(int x = 0; x < simArray.length; x++){
// for(int y = 0; y < simArray[0].length; y++){
// for(int z = 0; z < simArray[0][0].length; z++){
// simArray[x][y][z].setBoundsToNeighborsWrapper(0, simArray[x][y][z].uAdditionVector);
// simArray[x][y][z].copyNeighborsWrapper(0, x, simArray[x][y][z].uAdditionVector);
// }
// }
// }
// }
// //samples u,v,w,u0
// //sets u,v,w
// //Finalize projection
// for(int x = 0; x < simArray.length; x++){
// for(int y = 0; y < simArray[0].length; y++){
// for(int z = 0; z < simArray[0][0].length; z++){
// //Subtract curl field from current vector field
// //...
// simArray[x][y][z].finalizeProjectionWrapper(timestep);
// }
// }
// }
// //set boundaries a final time for u,v,w
// //...
// for(int x = 0; x < simArray.length; x++){
// for(int y = 0; y < simArray[0].length; y++){
// for(int z = 0; z < simArray[0][0].length; z++){
// simArray[x][y][z].setBoundsToNeighborsWrapper(1, simArray[x][y][z].uVector);
// simArray[x][y][z].setBoundsToNeighborsWrapper(2, simArray[x][y][z].vVector);
// simArray[x][y][z].setBoundsToNeighborsWrapper(3, simArray[x][y][z].wVector);
// simArray[x][y][z].copyNeighborsWrapper(1, x, simArray[x][y][z].uVector);
// simArray[x][y][z].copyNeighborsWrapper(2, x, simArray[x][y][z].vVector);
// simArray[x][y][z].copyNeighborsWrapper(3, x, simArray[x][y][z].wVector);
// simArray[x][y][z].setBoundsToNeighborsWrapper(1, simArray[x][y][z].uAdditionVector);
// simArray[x][y][z].setBoundsToNeighborsWrapper(2, simArray[x][y][z].vAdditionVector);
// simArray[x][y][z].setBoundsToNeighborsWrapper(3, simArray[x][y][z].wAdditionVector);
// simArray[x][y][z].copyNeighborsWrapper(0, x, simArray[x][y][z].uAdditionVector);
// simArray[x][y][z].copyNeighborsWrapper(0, x, simArray[x][y][z].vAdditionVector);
// simArray[x][y][z].copyNeighborsWrapper(0, x, simArray[x][y][z].wAdditionVector);
// }
// }
// }
// }
// private static void mirrorNeighborDensities(FluidSim[][][] simArray, float timestep){
// for(int x = 0; x < simArray.length; x++){
// for(int y = 0; y < simArray[0].length; y++){
// for(int z = 0; z < simArray[0][0].length; z++){
// simArray[x][y][z].setBoundsToNeighborsWrapper(0, simArray[x][y][z].density);
// }
// }
// }
// }
// private static void swapAllVectorFields(FluidSim[][][] simArray, float timestep){
// for(int x = 0; x < simArray.length; x++){
// for(int y = 0; y < simArray[0].length; y++){
// for(int z = 0; z < simArray[0][0].length; z++){
// simArray[x][y][z].swapVectorFields();
// }
// }
// }
// //then need to mirror each array as relevant
// for(int x = 0; x < simArray.length; x++){
// for(int y = 0; y < simArray[0].length; y++){
// for(int z = 0; z < simArray[0][0].length; z++){
// simArray[x][y][z].copyNeighborsWrapper(1, x, simArray[x][y][z].uVector);
// simArray[x][y][z].copyNeighborsWrapper(2, x, simArray[x][y][z].vVector);
// simArray[x][y][z].copyNeighborsWrapper(3, x, simArray[x][y][z].wVector);
// simArray[x][y][z].copyNeighborsWrapper(1, x, simArray[x][y][z].uAdditionVector);
// simArray[x][y][z].copyNeighborsWrapper(2, x, simArray[x][y][z].vAdditionVector);
// simArray[x][y][z].copyNeighborsWrapper(2, x, simArray[x][y][z].wAdditionVector);
// }
// }
// }
// }
// private void swapVectorFields(){
// ByteBuffer tmp;
// //swap x0 <-> x
// // tmp = densityAddition;
// // densityAddition = density[13];
// // density[13] = tmp;
// //swap u0 <-> u
// for(int i = 0; i < 27; i++){
// tmp = uAdditionVector[i];
// uAdditionVector[i] = uVector[i];
// uVector[i] = tmp;
// //swap v0 <-> v
// tmp = vAdditionVector[i];
// vAdditionVector[i] = vVector[i];
// vVector[i] = tmp;
// //swap w0 <-> w
// tmp = wAdditionVector[i];
// wAdditionVector[i] = wVector[i];
// wVector[i] = tmp;
// }
// //...
// }
// private static void advectVectorsAcrossBoundaries(FluidSim[][][] simArray, float timestep){
// for(int x = 0; x < simArray.length; x++){
// for(int y = 0; y < simArray[0].length; y++){
// for(int z = 0; z < simArray[0][0].length; z++){
// simArray[x][y][z].setBoundsToNeighborsWrapper(1, simArray[x][y][z].uVector);
// simArray[x][y][z].setBoundsToNeighborsWrapper(2, simArray[x][y][z].vVector);
// simArray[x][y][z].setBoundsToNeighborsWrapper(3, simArray[x][y][z].wVector);
// simArray[x][y][z].setBoundsToNeighborsWrapper(1, simArray[x][y][z].uAdditionVector);
// simArray[x][y][z].setBoundsToNeighborsWrapper(2, simArray[x][y][z].vAdditionVector);
// simArray[x][y][z].setBoundsToNeighborsWrapper(3, simArray[x][y][z].wAdditionVector);
// simArray[x][y][z].copyNeighborsWrapper(1, x, simArray[x][y][z].uVector);
// simArray[x][y][z].copyNeighborsWrapper(2, x, simArray[x][y][z].vVector);
// simArray[x][y][z].copyNeighborsWrapper(3, x, simArray[x][y][z].wVector);
// simArray[x][y][z].copyNeighborsWrapper(1, x, simArray[x][y][z].uAdditionVector);
// simArray[x][y][z].copyNeighborsWrapper(2, x, simArray[x][y][z].vAdditionVector);
// simArray[x][y][z].copyNeighborsWrapper(3, x, simArray[x][y][z].wAdditionVector);
// }
// }
// }
// //samples u,v,w,u0,v0,w0
// for(int x = 0; x < simArray.length; x++){
// for(int y = 0; y < simArray[0].length; y++){
// for(int z = 0; z < simArray[0][0].length; z++){
// // advect(env, chunk_mask, N, 1, jru, u0, u0, v0, w0, dt);
// // advect(env, chunk_mask, N, 2, jrv, v0, u0, v0, w0, dt);
// // advect(env, chunk_mask, N, 3, jrw, w0, u0, v0, w0, dt);
// //...
// simArray[x][y][z].advectVectorsWrapper(timestep);
// }
// }
// }
// //mirror neighbor data
// for(int x = 0; x < simArray.length; x++){
// for(int y = 0; y < simArray[0].length; y++){
// for(int z = 0; z < simArray[0][0].length; z++){
// simArray[x][y][z].setBoundsToNeighborsWrapper(1, simArray[x][y][z].uVector);
// simArray[x][y][z].setBoundsToNeighborsWrapper(2, simArray[x][y][z].vVector);
// simArray[x][y][z].setBoundsToNeighborsWrapper(3, simArray[x][y][z].wVector);
// simArray[x][y][z].copyNeighborsWrapper(1, x, simArray[x][y][z].uVector);
// simArray[x][y][z].copyNeighborsWrapper(2, x, simArray[x][y][z].vVector);
// simArray[x][y][z].copyNeighborsWrapper(3, x, simArray[x][y][z].wVector);
// }
// }
// }
// }
// private static void addDensity(FluidSim[][][] simArray, float timestep){
// for(int x = 0; x < simArray.length; x++){
// for(int y = 0; y < simArray[0].length; y++){
// for(int z = 0; z < simArray[0][0].length; z++){
// //add_source(N, x, x0, dt);
// simArray[x][y][z].addDensityWrapper(timestep);
// //swap x <=> x0
// //swap arrays in java side...
// // simArray[x][y][z].swapDensityArrays();
// }
// }
// }
// }
// private static void swapAllDensityArrays(FluidSim[][][] simArray, float timestep){
// for(int x = 0; x < simArray.length; x++){
// for(int y = 0; y < simArray[0].length; y++){
// for(int z = 0; z < simArray[0][0].length; z++){
// simArray[x][y][z].swapDensityArrays();
// }
// }
// }
// for(int x = 0; x < simArray.length; x++){
// for(int y = 0; y < simArray[0].length; y++){
// for(int z = 0; z < simArray[0][0].length; z++){
// simArray[x][y][z].copyNeighborsWrapper(0, x, simArray[x][y][z].density);
// simArray[x][y][z].copyNeighborsWrapper(0, x, simArray[x][y][z].densityAddition);
// }
// }
// }
// }
// private void swapDensityArrays(){
// for(int i = 0; i < 27; i++){
// ByteBuffer tmp = density[i];
// density[i] = densityAddition[i];
// densityAddition[i] = tmp;
// }
// }
// private static void diffuseDensity(FluidSim[][][] simArray, float timestep){
// for(int l = 0; l < LINEARSOLVERTIMES; l++){
// for(int x = 0; x < simArray.length; x++){
// for(int y = 0; y < simArray[0].length; y++){
// for(int z = 0; z < simArray[0][0].length; z++){
// //lin_solve(env, chunk_mask, N, b, x, x0, a, 1+6*a);
// //+
// //set_bnd(env, chunk_mask, N, b, x);
// simArray[x][y][z].solveDiffuseDensityWrapper(timestep);
// }
// }
// }
// for(int x = 0; x < simArray.length; x++){
// for(int y = 0; y < simArray[0].length; y++){
// for(int z = 0; z < simArray[0][0].length; z++){
// simArray[x][y][z].setBoundsToNeighborsWrapper(0, simArray[x][y][z].density);
// }
// }
// }
// }
// }
// private static void advectDensity(FluidSim[][][] simArray, float timestep){
// for(int x = 0; x < simArray.length; x++){
// for(int y = 0; y < simArray[0].length; y++){
// for(int z = 0; z < simArray[0][0].length; z++){
// //swap x <=> x0 again
// // simArray[x][y][z].swapDensityArrays();
// //advect density
// simArray[x][y][z].advectDensityWrapper(timestep);
// }
// }
// }
// }
/**
* OLD NATIVE DECLARATIONS
* Main simulation function
* @param timestep
*/
// /**
// * The native function call to simulate a frame of fluid
// * @param DIM_X
// * @param DIM_Y
// * @param DIM_Z
// * @param x
// * @param x0
// * @param u
// * @param v
// * @param w
// * @param u0
// * @param v0
// * @param w0
// * @param DIFFUSION_CONSTANT
// * @param VISCOSITY_CONSTANT
// * @param timestep
// */
// private native void simulate(
// int DIM_X,
// int chunkMask,
// ByteBuffer[] x,
// ByteBuffer x0,
// ByteBuffer[] u,
// ByteBuffer[] v,
// ByteBuffer[] w,
// ByteBuffer[] u0,
// ByteBuffer[] v0,
// ByteBuffer[] w0,
// float DIFFUSION_CONSTANT,
// float VISCOSITY_CONSTANT,
// float timestep
// );
// private void calculateChunkMaskWrapper(){
// this.chunkMask = this.calculateChunkMask(density);
// }
// /**
// * Calculates the mask of chunk neighbors
// * @param densityBuffers The neighbor array
// * @return The mask
// */
// private native int calculateChunkMask(ByteBuffer[] densityBuffers);
// /**
// * Add vector values to u, v, and w all at once
// */
// private void addSourceToVectorsWrapper(float timestep){
// addSourceToVectors(DIM, chunkMask, uVector, vVector, wVector, uAdditionVector, vAdditionVector, wAdditionVector, DIFFUSION_CONSTANT, VISCOSITY_CONSTANT, timestep);
// }
// private native void addSourceToVectors(int DIM_X, int chunkMask, ByteBuffer[] u, ByteBuffer v[], ByteBuffer w[], ByteBuffer u0[], ByteBuffer v0[], ByteBuffer w0[], float DIFFUSION_CONSTANT, float VISCOSITY_CONSTANT, float timestep);
// /**
// * Solves u, v, and w diffusion systems of equations
// */
// private void solveVectorDiffuseWrapper(float timestep){
// solveVectorDiffuse(DIM, chunkMask, uVector, vVector, wVector, uAdditionVector, vAdditionVector, wAdditionVector, DIFFUSION_CONSTANT, VISCOSITY_CONSTANT, timestep);
// }
// private native void solveVectorDiffuse(int DIM_X, int chunkMask, ByteBuffer[] u, ByteBuffer v[], ByteBuffer w[], ByteBuffer u0[], ByteBuffer v0[], ByteBuffer w0[], float DIFFUSION_CONSTANT, float VISCOSITY_CONSTANT, float timestep);
// /**
// * Setup projection system
// */
// private void setupProjectionWrapper(float timestep){
// setupProjection(DIM, chunkMask, uVector, vVector, wVector, uAdditionVector, vAdditionVector, wAdditionVector, DIFFUSION_CONSTANT, VISCOSITY_CONSTANT, timestep);
// }
// private native void setupProjection(int DIM_X, int chunkMask, ByteBuffer[] u, ByteBuffer v[], ByteBuffer w[], ByteBuffer u0[], ByteBuffer v0[], ByteBuffer w0[], float DIFFUSION_CONSTANT, float VISCOSITY_CONSTANT, float timestep);
// /**
// * Solve projection system
// */
// private void solveProjectionWrapper(float timestep){
// solveProjection(DIM, chunkMask, uVector, vVector, wVector, uAdditionVector, vAdditionVector, wAdditionVector, DIFFUSION_CONSTANT, VISCOSITY_CONSTANT, timestep);
// }
// private native void solveProjection(int DIM_X, int chunkMask, ByteBuffer[] u, ByteBuffer v[], ByteBuffer w[], ByteBuffer u0[], ByteBuffer v0[], ByteBuffer w0[], float DIFFUSION_CONSTANT, float VISCOSITY_CONSTANT, float timestep);
// /**
// * Does work like subtracting curl from vector field, setting boundaries, etc
// */
// private void finalizeProjectionWrapper(float timestep){
// finalizeProjection(DIM, chunkMask, uVector, vVector, wVector, uAdditionVector, vAdditionVector, wAdditionVector, DIFFUSION_CONSTANT, VISCOSITY_CONSTANT, timestep);
// }
// private native void finalizeProjection(int DIM_X, int chunkMask, ByteBuffer[] u, ByteBuffer v[], ByteBuffer w[], ByteBuffer u0[], ByteBuffer v0[], ByteBuffer w0[], float DIFFUSION_CONSTANT, float VISCOSITY_CONSTANT, float timestep);
// /**
// * Advects vectors
// */
// private void advectVectorsWrapper(float timestep){
// advectVectors(DIM, chunkMask, uVector, vVector, wVector, uAdditionVector, vAdditionVector, wAdditionVector, DIFFUSION_CONSTANT, VISCOSITY_CONSTANT, timestep);
// }
// private native void advectVectors(int DIM_X, int chunkMask, ByteBuffer[] u, ByteBuffer v[], ByteBuffer w[], ByteBuffer u0[], ByteBuffer v0[], ByteBuffer w0[], float DIFFUSION_CONSTANT, float VISCOSITY_CONSTANT, float timestep);
// /**
// * Adds density to the simulation
// */
// private void addDensityWrapper(float timestep){
// addDensity(DIM, chunkMask, density, densityAddition, timestep);
// }
// private native void addDensity(int DIM_X, int chunkMask, ByteBuffer[] x, ByteBuffer[] x0, float timestep);
// /**
// * Solve density diffusion
// */
// private void solveDiffuseDensityWrapper(float timestep){
// solveDiffuseDensity(DIM, chunkMask, density, densityAddition, uVector, vVector, wVector, DIFFUSION_CONSTANT, VISCOSITY_CONSTANT, timestep);
// }
// private native void solveDiffuseDensity(int DIM_X, int chunkMask, ByteBuffer[] x, ByteBuffer[] x0, ByteBuffer[] u, ByteBuffer v[], ByteBuffer w[], float DIFFUSION_CONSTANT, float VISCOSITY_CONSTANT, float timestep);
// /**
// * Solve density diffusion
// */
// private void advectDensityWrapper(float timestep){
// advectDensity(DIM, chunkMask, density, densityAddition, uVector, vVector, wVector, DIFFUSION_CONSTANT, VISCOSITY_CONSTANT, timestep);
// }
// private native void advectDensity(int DIM_X, int chunkMask, ByteBuffer[] x, ByteBuffer[] x0, ByteBuffer[] u, ByteBuffer v[], ByteBuffer w[], float DIFFUSION_CONSTANT, float VISCOSITY_CONSTANT, float timestep);
// /**
// * Sets the bounds of the neighbormap to neighbor values if available
// */
// private void setBoundsToNeighborsWrapper(int vectorDir, ByteBuffer[] neighborMap){
// setBoundsToNeighbors(DIM, chunkMask, vectorDir, neighborMap);
// }
// private native void setBoundsToNeighbors(int DIM_X, int chunkMask, int vectorDir, ByteBuffer[] neighborMap);
// /**
// * Sets the bounds of the neighbormap to neighbor values if available, otherwise doesn't mess with them.
// * This is to make sure zeroing out doesn't mess up the sim
// */
// private void copyNeighborsWrapper(int vectorDir, int x, ByteBuffer[] neighborMap){
// copyNeighbors(DIM, chunkMask, x, vectorDir, neighborMap);
// }
// private native void copyNeighbors(int DIM_X, int chunkMask, int x, int vectorDir, ByteBuffer[] neighborMap);
/**
* Creates the thread pool for handling main work of the c lib
*/
public static long createThreadpoolWrapper(int numThreads){
return createThreadpool(numThreads);
private static void simulateWrapper(List<FluidSim> chunks, float timestep){
simulate(chunks,timestep);
}
private static native long createThreadpool(int numThreads);
/**
* Unlocks the C threadpool
*/
public static long unlockThreadsWrapper(){
return unlockThreads(threadpool);
}
private static native long unlockThreads(long threadPoolPtr);
/**
* Queues a single chunk to be simulated this frame
* @param chunk The chunk
* @param timestep The amount of time to simulate it for
*/
public static void queueChunkWrapper(long libraryContext, FluidSim chunk, float timestep){
queueChunk(
libraryContext,
DIM,
chunk.chunkMask,
chunk.density,
chunk.densityAddition,
chunk.uVector,
chunk.vVector,
chunk.wVector,
chunk.uAdditionVector,
chunk.vAdditionVector,
chunk.wAdditionVector,
DIFFUSION_CONSTANT,
VISCOSITY_CONSTANT,
timestep
);
}
public static native void queueChunk(
long libraryContext,
int DIM_X,
int chunkMask,
ByteBuffer[] d,
ByteBuffer[] d0,
ByteBuffer[] u,
ByteBuffer[] v,
ByteBuffer[] w,
ByteBuffer[] u0,
ByteBuffer[] v0,
ByteBuffer[] w0,
float DIFFUSION_CONSTANT,
float VISCOSITY_CONSTANT,
float timestep
);
/**
* Sends work to the threadpool
*/
public static void submitWorkWrapper(long contextPtr){
submitWork(contextPtr);
}
public static native void submitWork(long contextPtr);
/**
* Fetches work from the threadpool
*/
public static void fetchWorkWrapper(long contextPtr){
fetchWork(contextPtr);
}
public static native void fetchWork(long contextPtr);
private static native void simulate(List<FluidSim> chunks, float timestep);
@ -1114,7 +493,7 @@ public class FluidSim {
for(int k = 0; k < DIM; k++){
index = ((i)+(DIM)*(j) + (DIM)*(DIM)*(k));
u0ArrayView[index] = 0;
v0ArrayView[index] = 0;
v0ArrayView[index] = densityArrayView[index] * GRAVITY;
w0ArrayView[index] = 0;
}
}

View File

@ -22,7 +22,7 @@ public class Main {
public static void main(String args[]){
int dim = 10;
int dim = 5;
int i = 0;
long time = 0;
long lastTime = 0;
@ -36,9 +36,9 @@ public class Main {
Mesh.initShaderProgram();
FluidSim[][][] simArray = initFluidSim(dim,1,1);
FluidSim[][][] simArray = initFluidSim(dim,1,dim);
Mesh[][][] meshArray = initMeshes(dim,1,1,simArray);
Mesh[][][] meshArray = initMeshes(dim,1,dim,simArray);
@ -55,10 +55,7 @@ public class Main {
//
//Simulate
//
FluidSim.unlockThreadsWrapper();
FluidSim.simChunks(simArray,i,0.0001f);
FluidSim.unlockThreadsWrapper();
time = time + (System.currentTimeMillis() - lastTime);
FluidSim.simChunks(simArray,i,0.01f);
//
//Remesh
//
@ -69,11 +66,12 @@ public class Main {
}
}
}
time = time + (System.currentTimeMillis() - lastTime);
//redraw
GLFWContext.redraw(meshArray);
i++;
if(i == 100){
System.out.println(time / 100.0);
System.out.println("overall time: " + time / 100.0);
}
if(i > 3){
// scan.next();
@ -85,7 +83,6 @@ public class Main {
}
private static FluidSim[][][] initFluidSim(int dimx, int dimy, int dimz){
FluidSim.threadpool = FluidSim.createThreadpoolWrapper(5);
FluidSim[][][] simArray = new FluidSim[dimx][dimy][dimz];
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){