Compare commits

..

No commits in common. "master" and "multichunking-success" have entirely different histories.

273 changed files with 1164 additions and 2436 deletions

3
.gitignore vendored
View File

@ -5,6 +5,7 @@
/.settings
/.classpath
/.project
/.vscode
/shared-folder
/shared-folder/**
/chunks
/src/main/c/lib/**

3
.gitmodules vendored
View File

@ -1,3 +0,0 @@
[submodule "src/main/c/lib/stb"]
path = src/main/c/lib/stb
url = https://github.com/nothings/stb.git

View File

@ -1,22 +0,0 @@
{
"configurations": [
{
"name": "Win32",
"includePath": [
"${workspaceFolder}/**",
"C:/Program Files/Eclipse Adoptium/jdk-21.0.5.11-hotspot/include/**"
],
"defines": [
"_DEBUG",
"UNICODE",
"_UNICODE"
],
"windowsSdkVersion": "10.0.19041.0",
"compilerPath": "C:/ProgramData/mingw64/mingw64/bin/gcc.exe",
"cStandard": "c17",
"cppStandard": "c++17",
"intelliSenseMode": "windows-gcc-x64"
}
],
"version": 4
}

View File

@ -1,6 +0,0 @@
{
"recommendations": [
"ms-vscode.cpptools-extension-pack",
"vscjava.vscode-java-pack"
]
}

20
.vscode/launch.json vendored
View File

@ -1,20 +0,0 @@
{
"configurations": [
{
"type": "java",
"name": "Launch Java Program",
"request": "launch",
"mainClass": "electrosphere.Main",
"preLaunchTask": "compileNoSteps",
"vmArgs": "-Djava.library.path=./shared-folder"
},
{
"type": "java",
"name": "Launch Java Program (SAVE CHUNKS TO DISK)",
"request": "launch",
"mainClass": "electrosphere.Main",
"preLaunchTask": "compileWithSteps",
"vmArgs": "-Djava.library.path=./shared-folder"
}
]
}

21
.vscode/settings.json vendored
View File

@ -1,21 +0,0 @@
{
"java.configuration.updateBuildConfiguration": "automatic",
"files.associations": {
"stdio.h": "c",
"jni.h": "c",
"immintrin.h": "c",
"stdint.h": "c",
"utilities.h": "c",
"chunkmask.h": "c",
"pthread.h": "c",
"semaphore.h": "c",
"libfluidsim.h": "c",
"stb_ds.h": "c",
"threadpool.h": "c",
"electrosphere_fluidsim.h": "c",
"type_traits": "c",
"mainfunctions.h": "c",
"chunk.h": "c",
"simulation.h": "c"
}
}

15
.vscode/tasks.json vendored
View File

@ -1,15 +0,0 @@
{
"version": "2.0.0",
"tasks": [
{
"label": "compileWithSteps",
"type": "shell",
"command": "SAVE_STEPS=1 ./src/main/c/compile.sh",
},
{
"label": "compileNoSteps",
"type": "shell",
"command": "SAVE_STEPS=0 ./src/main/c/compile.sh",
}
]
}

View File

@ -1,11 +0,0 @@
# Fluid Sim
## How to run
Clone with `git clone --recurse-submodules git@git.austinwhoover.com:studiorailgun/fluid-sim.git`
Then run with VSCode debug plugin

View File

@ -1,9 +0,0 @@
search_dir=./chunks
for entry in "$search_dir"/*
do
if ! diff "/c/Users/satellite/Documents/fluid-sim/$entry" "/c/Users/satellite/Documents/fluid-sim-the-golden-code/$entry" > /dev/null;
then
echo "$entry differs"
fi
done
echo "done!"

View File

@ -73,9 +73,6 @@
</goals>
<configuration>
<executable>bash</executable>
<environmentVariables>
<SAVE_STEPS>0</SAVE_STEPS>
</environmentVariables>
<arguments>
<argument>./src/main/c/compile.sh</argument>
</arguments>
@ -83,10 +80,6 @@
</execution>
</executions>
</plugin>
<plugin>
<artifactId>maven-surefire-plugin</artifactId>
<version>3.2.5</version>
</plugin>
</plugins>
</build>
<profiles>
@ -110,56 +103,6 @@
</properties>
</profile>
</profiles>
<dependencies>
<dependency>
<groupId>org.junit.jupiter</groupId>
<artifactId>junit-jupiter-engine</artifactId>
<version>5.10.2</version>
<scope>test</scope>
<exclusions>
<exclusion>
<artifactId>junit-platform-engine</artifactId>
<groupId>org.junit.platform</groupId>
</exclusion>
<exclusion>
<artifactId>junit-jupiter-api</artifactId>
<groupId>org.junit.jupiter</groupId>
</exclusion>
<exclusion>
<artifactId>apiguardian-api</artifactId>
<groupId>org.apiguardian</groupId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.junit.platform</groupId>
<artifactId>junit-platform-runner</artifactId>
<version>1.10.2</version>
<scope>test</scope>
<exclusions>
<exclusion>
<artifactId>junit</artifactId>
<groupId>junit</groupId>
</exclusion>
<exclusion>
<artifactId>junit-platform-launcher</artifactId>
<groupId>org.junit.platform</groupId>
</exclusion>
<exclusion>
<artifactId>junit-platform-suite-api</artifactId>
<groupId>org.junit.platform</groupId>
</exclusion>
<exclusion>
<artifactId>junit-platform-suite-commons</artifactId>
<groupId>org.junit.platform</groupId>
</exclusion>
<exclusion>
<artifactId>apiguardian-api</artifactId>
<groupId>org.apiguardian</groupId>
</exclusion>
</exclusions>
</dependency>
</dependencies>
<dependencyManagement>
<dependencies>
<dependency>

View File

@ -1,26 +0,0 @@
'sleep' chunks if there are no massive velocity swings for ~100 frames
- unsleep as soon as new density or velocity is added
VVV These two may not work because the projection phase currently iterates over all cells with avx instructions
it also may generally not work as fast moving water basically works by having empty cells query area that already has water (so maybe no sleeping air)
'sleep' individual cells that are full of water and fully surrounded by water
'sleep' terrain cells
'sleep' "inactive" cells
- When reading data back into java, while iterating over each cell check if they've changed value
- If not, add 1 to an accumulating array alongside the other ones (d, u, etc)
- In C, if the accumulating array is >100 or some threshold, skip the cell
- If a force gets added java side that is greater than some threshold, set all accumulating array to 0
multigrid method for projection code
intelligent neighbor awakening --
If a neighbor is asleep (say a neighbor full of air above this cell),
do not simulate that neighbor at all
Instead poll the currently awake cell for large velocity spikes in the direction of the neighbor
If there is a large spike, awake the neighbor cell
if a neighbor is awoken, the simulator should go back through and simulate for that chunk as well (idk if this is possible)
use avx bitmasking for handling terrain in projection code ???

22
pom.xml
View File

@ -64,7 +64,6 @@
<dependencies>
<!--lwjgl-->
<dependency>
<groupId>org.lwjgl</groupId>
<artifactId>lwjgl</artifactId>
@ -110,19 +109,6 @@
<artifactId>lwjgl-opengl</artifactId>
<classifier>${lwjgl.natives}</classifier>
</dependency>
<!--junit-->
<dependency>
<groupId>org.junit.jupiter</groupId>
<artifactId>junit-jupiter-engine</artifactId>
<version>5.10.2</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.junit.platform</groupId>
<artifactId>junit-platform-runner</artifactId>
<version>1.10.2</version>
<scope>test</scope>
</dependency>
</dependencies>
<build>
@ -195,9 +181,6 @@
</goals>
<configuration>
<executable>bash</executable>
<environmentVariables>
<SAVE_STEPS>0</SAVE_STEPS>
</environmentVariables>
<arguments>
<argument>./src/main/c/compile.sh</argument>
</arguments>
@ -205,11 +188,6 @@
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>3.2.5</version>
</plugin>
</plugins>
</build>

102
src/main/c/chunkmask.c Normal file
View File

@ -0,0 +1,102 @@
#include <jni.h>
#include <stdint.h>
#include "includes/utilities.h"
#include "includes/chunkmask.h"
uint32_t matrix_transform(JNIEnv * env, jobjectArray jrx);
/**
* Calculates the bitmask for available chunks for the provided chunk's neighbor array
*/
JNIEXPORT jint JNICALL Java_electrosphere_FluidSim_calculateChunkMask(JNIEnv * env, jobject this, jobjectArray jrx){
return matrix_transform(env,jrx);
}
/**
* Calculates a mask that represents all nearby chunks that are actually accessible and exist
*/
uint32_t matrix_transform(JNIEnv * env, jobjectArray jrx){
//The returned value, an availability mask that contains the availability of each neighbor chunk
uint32_t rVal = 0;
//Add to maks for initial chunks
for(int i = 0; i < CENTER_LOC; i++){
if((*env)->GetObjectArrayElement(env,jrx,i)!=NULL){
rVal = rVal + 1;
}
rVal = rVal << 1;
}
//add 1 for center chunk because we already have that
rVal = rVal + 1;
rVal = rVal << 1;
//continue on for remaining chunks
for(int i = CENTER_LOC+1; i < 27; i++){
if((*env)->GetObjectArrayElement(env,jrx,i)!=NULL){
rVal = rVal + 1;
}
if(i < 26){
rVal = rVal << 1;
}
}
return rVal;
}
const uint32_t CHUNK_INDEX_ARR[] = {
CHUNK_000, CHUNK_100, CHUNK_200,
CHUNK_010, CHUNK_110, CHUNK_210,
CHUNK_020, CHUNK_120, CHUNK_220,
CHUNK_001, CHUNK_101, CHUNK_201,
CHUNK_011, CHUNK_111, CHUNK_211,
CHUNK_021, CHUNK_121, CHUNK_221,
CHUNK_002, CHUNK_102, CHUNK_202,
CHUNK_012, CHUNK_112, CHUNK_212,
CHUNK_022, CHUNK_122, CHUNK_222,
};
//control offsetting the advect sampler location if a valid neighbor chunk is hit
const char CHUNK_NORMALIZE_U[] = {
1, 0, -1,
1, 0, -1,
1, 0, -1,
1, 0, -1,
1, 0, -1,
1, 0, -1,
1, 0, -1,
1, 0, -1,
1, 0, -1,
};
const char CHUNK_NORMALIZE_V[] = {
1, 1, 1,
0, 0, 0,
-1, -1, -1,
1, 1, 1,
0, 0, 0,
-1, -1, -1,
1, 1, 1,
0, 0, 0,
-1, -1, -1,
};
const char CHUNK_NORMALIZE_W[] = {
1, 1, 1,
1, 1, 1,
1, 1, 1,
0, 0, 0,
0, 0, 0,
0, 0, 0,
-1, -1, -1,
-1, -1, -1,
-1, -1, -1,
};

View File

@ -1,7 +1,5 @@
cd ./src/main/c
echo "SAVE STEPS $SAVE_STEPS"
LIB_ENDING=".so"
BASE_INCLUDE_DIR=""
OS_INCLUDE_DIR=""
@ -43,29 +41,19 @@ rm -f ./*.dll
#compile object files
# COMPILE_FLAGS="-c -fPIC -m64 -mavx -mavx2 -march=native -Ofast -msse -msse2 -msse3 -mmmx -m3dnow"
# INPUT_FILES="./src/densitystep.c"
# OUTPUT_FILE="./densitystep.o"
# gcc $COMPILE_FLAGS -I"$BASE_INCLUDE_DIR" -I"$OS_INCLUDE_DIR" $INPUT_FILES -o $OUTPUT_FILE
# COMPILE_FLAGS="-c -fPIC -m64 -mavx -mavx2 -march=native -Ofast -msse -msse2 -msse3 -mmmx -m3dnow"
# INPUT_FILES="./src/velocitystep.c"
# OUTPUT_FILE="./velocitystep.o"
# gcc $COMPILE_FLAGS -I"$BASE_INCLUDE_DIR" -I"$OS_INCLUDE_DIR" $INPUT_FILES -o $OUTPUT_FILE
# COMPILE_FLAGS="-c -fPIC -m64 -mavx -mavx2 -march=native -Ofast -msse -msse2 -msse3 -mmmx -m3dnow"
# INPUT_FILES="./src/chunkmask.c"
# OUTPUT_FILE="./chunkmask.o"
# gcc $COMPILE_FLAGS -I"$BASE_INCLUDE_DIR" -I"$OS_INCLUDE_DIR" $INPUT_FILES -o $OUTPUT_FILE
COMPILE_FLAGS="-c -fPIC -m64 -mavx -mavx2 -march=native -Ofast -DSAVE_STEPS=$SAVE_STEPS"
INPUT_FILES="./src/javainterface.c"
OUTPUT_FILE="./javainterface.o"
COMPILE_FLAGS="-c -fPIC -m64 -mavx -mavx2 -O1"
INPUT_FILES="./densitystep.c"
OUTPUT_FILE="./densitystep.o"
gcc $COMPILE_FLAGS -I"$BASE_INCLUDE_DIR" -I"$OS_INCLUDE_DIR" $INPUT_FILES -o $OUTPUT_FILE
COMPILE_FLAGS="-c -fPIC -m64 -mavx -mavx2 -march=native -Ofast -DSAVE_STEPS=$SAVE_STEPS"
INPUT_FILES="./src/fluidsim.c"
OUTPUT_FILE="./fluidsim.o"
COMPILE_FLAGS="-c -fPIC -m64 -mavx -mavx2 -O1"
INPUT_FILES="./velocitystep.c"
OUTPUT_FILE="./velocitystep.o"
gcc $COMPILE_FLAGS -I"$BASE_INCLUDE_DIR" -I"$OS_INCLUDE_DIR" $INPUT_FILES -o $OUTPUT_FILE
COMPILE_FLAGS="-c -fPIC -m64 -mavx -mavx2 -O1"
INPUT_FILES="./chunkmask.c"
OUTPUT_FILE="./chunkmask.o"
gcc $COMPILE_FLAGS -I"$BASE_INCLUDE_DIR" -I"$OS_INCLUDE_DIR" $INPUT_FILES -o $OUTPUT_FILE
@ -73,7 +61,7 @@ gcc $COMPILE_FLAGS -I"$BASE_INCLUDE_DIR" -I"$OS_INCLUDE_DIR" $INPUT_FILES -o $OU
#compile shared object file
OUTPUT_FILE="libfluidsim$LIB_ENDING"
COMPILE_FLAGS="-shared"
INPUT_FILES="fluidsim.o javainterface.o"
INPUT_FILES="densitystep.o velocitystep.o chunkmask.o"
gcc $COMPILE_FLAGS $INPUT_FILES -o $OUTPUT_FILE
#move to resources

View File

@ -1,50 +1,58 @@
#include <jni.h>
#include <stdio.h>
#include <immintrin.h>
#include <stdint.h>
#include "../includes/utilities.h"
#include "../includes/chunkmask.h"
#include "includes/utilities.h"
#include "includes/chunkmask.h"
void advectDensity(JNIEnv * env, uint32_t chunk_mask, int N, int b, jobjectArray jrd, jobjectArray d0, float * u, float * v, float * w, float dt);
/**
* Adds density to the density array
*/
static inline void addDensity(
int N,
int chunk_mask,
float ** d,
float ** d0,
float dt
){
/*
* Class: electrosphere_FluidSim
* Method: addDensity
* Signature: (II[Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;F)V
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_addDensity
(JNIEnv * env,
jobject this,
jint N,
jint chunk_mask,
jobjectArray jrx,
jobjectArray x0,
jfloat dt){
int i;
int size=N*N*N;
float * x = GET_ARR_RAW(d,CENTER_LOC);
float * s = GET_ARR_RAW(d0,CENTER_LOC);
float * x = GET_ARR(env,jrx,CENTER_LOC);
float * s = GET_ARR(env,x0,CENTER_LOC);
for(i=0; i<size; i++){
x[i] += dt*s[i];
}
}
/*
* A single iteration of the jacobi to solve density diffusion
* Class: electrosphere_FluidSim
* Method: solveDiffuseDensity
* Signature: (II[Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
static inline void solveDiffuseDensity(
int N,
int chunk_mask,
float ** d,
float ** d0,
float ** jru,
float ** jrv,
float ** jrw,
float DIFFUSION_CONST,
float VISCOSITY_CONST,
float dt
){
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_solveDiffuseDensity
(JNIEnv * env,
jobject this,
jint N,
jint chunk_mask,
jobjectArray jrx,
jobjectArray jrx0,
jobjectArray jru,
jobjectArray jrv,
jobjectArray jrw,
jfloat DIFFUSION_CONST,
jfloat VISCOSITY_CONST,
jfloat dt){
float a=dt*DIFFUSION_CONST*N*N*N;
float c=1+6*a;
int i, j, k, l, m;
float * x = GET_ARR_RAW(d,CENTER_LOC);
float * x0 = GET_ARR_RAW(d0,CENTER_LOC);
float * x = GET_ARR(env,jrx,CENTER_LOC);
float * x0 = GET_ARR(env,jrx0,CENTER_LOC);
__m256 aScalar = _mm256_set1_ps(a);
__m256 cScalar = _mm256_set1_ps(c);
@ -76,27 +84,42 @@ static inline void solveDiffuseDensity(
}
}
/**
* Advects the density based on the vectors
*/
static inline void advectDensity(uint32_t chunk_mask, int N, float ** d, float ** d0, float ** ur, float ** vr, float ** wr, float dt){
/*
* Class: electrosphere_FluidSim
* Method: advectDensity
* Signature: (II[Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_advectDensity
(JNIEnv * env,
jobject this,
jint N,
jint chunk_mask,
jobjectArray jrx,
jobjectArray jrx0,
jobjectArray jru,
jobjectArray jrv,
jobjectArray jrw,
jfloat DIFFUSION_CONST,
jfloat VISCOSITY_CONST,
jfloat dt){
advectDensity(env,chunk_mask,N,3,jrx,jrx0,GET_ARR(env,jru,CENTER_LOC),GET_ARR(env,jrv,CENTER_LOC),GET_ARR(env,jrw,CENTER_LOC),dt);
}
void advectDensity(JNIEnv * env, uint32_t chunk_mask, int N, int b, jobjectArray jrd, jobjectArray jrd0, float * u, float * v, float * w, float dt){
int i, j, k, i0, j0, k0, i1, j1, k1;
int m,n,o;
float x, y, z, s0, t0, s1, t1, u1, u0, dtx,dty,dtz;
dtx=dty=dtz=dt*N;
float * center_d = GET_ARR_RAW(d,CENTER_LOC);
float * center_d0 = GET_ARR_RAW(d0,CENTER_LOC);
float * d = GET_ARR(env,jrd,CENTER_LOC);
float * u = GET_ARR_RAW(ur,CENTER_LOC);
float * v = GET_ARR_RAW(vr,CENTER_LOC);
float * w = GET_ARR_RAW(wr,CENTER_LOC);
float * d0 = GET_ARR(env,jrd0,CENTER_LOC);
for(k=1; k<N-1; k++){
for(j=1; j<N-1; j++){
for(i=1; i<N-1; i++){
center_d0 = GET_ARR_RAW(d0,CENTER_LOC);
d0 = GET_ARR(env,jrd0,CENTER_LOC);
//calculate location to pull from
x = i-dtx*u[IX(i,j,k)];
y = j-dty*v[IX(i,j,k)];
@ -211,18 +234,18 @@ static inline void advectDensity(uint32_t chunk_mask, int N, float ** d, float *
// if(k1 < 0){
// k1 = 0;
// }
center_d[IX(i,j,k)] =
d[IX(i,j,k)] =
s0*(
t0*u0*center_d0[IX(i0,j0,k0)]+
t1*u0*center_d0[IX(i0,j1,k0)]+
t0*u1*center_d0[IX(i0,j0,k1)]+
t1*u1*center_d0[IX(i0,j1,k1)]
t0*u0*d0[IX(i0,j0,k0)]+
t1*u0*d0[IX(i0,j1,k0)]+
t0*u1*d0[IX(i0,j0,k1)]+
t1*u1*d0[IX(i0,j1,k1)]
)+
s1*(
t0*u0*center_d0[IX(i1,j0,k0)]+
t1*u0*center_d0[IX(i1,j1,k0)]+
t0*u1*center_d0[IX(i1,j0,k1)]+
t1*u1*center_d0[IX(i1,j1,k1)]
t0*u0*d0[IX(i1,j0,k0)]+
t1*u0*d0[IX(i1,j1,k0)]+
t0*u1*d0[IX(i1,j0,k1)]+
t1*u1*d0[IX(i1,j1,k1)]
);
}
}

View File

@ -1,19 +0,0 @@
#ifndef CHUNK_H
#define CHUNK_H
/**
* A chunk
*/
typedef struct {
float * d[27];
float * d0[27];
float * u[27];
float * v[27];
float * w[27];
float * u0[27];
float * v0[27];
float * w0[27];
int chunkMask;
} Chunk;
#endif

View File

@ -10,20 +10,116 @@ extern "C" {
#undef electrosphere_FluidSim_DIM
#define electrosphere_FluidSim_DIM 18L
#undef electrosphere_FluidSim_DIFFUSION_CONSTANT
#define electrosphere_FluidSim_DIFFUSION_CONSTANT 1.0E-5f
#define electrosphere_FluidSim_DIFFUSION_CONSTANT 0.0f
#undef electrosphere_FluidSim_VISCOSITY_CONSTANT
#define electrosphere_FluidSim_VISCOSITY_CONSTANT 1.0E-5f
#define electrosphere_FluidSim_VISCOSITY_CONSTANT 0.0f
#undef electrosphere_FluidSim_LINEARSOLVERTIMES
#define electrosphere_FluidSim_LINEARSOLVERTIMES 20L
#undef electrosphere_FluidSim_GRAVITY
#define electrosphere_FluidSim_GRAVITY -1000.0f
#define electrosphere_FluidSim_GRAVITY -100.0f
/*
* Class: electrosphere_FluidSim
* Method: simulate
* Signature: (Ljava/util/List;F)V
* Signature: (II[Ljava/nio/ByteBuffer;Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_simulate
(JNIEnv *, jclass, jobject, jfloat);
(JNIEnv *, jobject, jint, jint, jobjectArray, jobject, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jfloat, jfloat, jfloat);
/*
* Class: electrosphere_FluidSim
* Method: calculateChunkMask
* Signature: ([Ljava/nio/ByteBuffer;)I
*/
JNIEXPORT jint JNICALL Java_electrosphere_FluidSim_calculateChunkMask
(JNIEnv *, jobject, jobjectArray);
/*
* Class: electrosphere_FluidSim
* Method: addSourceToVectors
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_addSourceToVectors
(JNIEnv *, jobject, jint, jint, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jfloat, jfloat, jfloat);
/*
* Class: electrosphere_FluidSim
* Method: solveVectorDiffuse
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_solveVectorDiffuse
(JNIEnv *, jobject, jint, jint, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jfloat, jfloat, jfloat);
/*
* Class: electrosphere_FluidSim
* Method: setupProjection
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_setupProjection
(JNIEnv *, jobject, jint, jint, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jfloat, jfloat, jfloat);
/*
* Class: electrosphere_FluidSim
* Method: solveProjection
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_solveProjection
(JNIEnv *, jobject, jint, jint, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jfloat, jfloat, jfloat);
/*
* Class: electrosphere_FluidSim
* Method: finalizeProjection
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_finalizeProjection
(JNIEnv *, jobject, jint, jint, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jfloat, jfloat, jfloat);
/*
* Class: electrosphere_FluidSim
* Method: advectVectors
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_advectVectors
(JNIEnv *, jobject, jint, jint, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jfloat, jfloat, jfloat);
/*
* Class: electrosphere_FluidSim
* Method: addDensity
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;F)V
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_addDensity
(JNIEnv *, jobject, jint, jint, jobjectArray, jobjectArray, jfloat);
/*
* Class: electrosphere_FluidSim
* Method: solveDiffuseDensity
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_solveDiffuseDensity
(JNIEnv *, jobject, jint, jint, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jfloat, jfloat, jfloat);
/*
* Class: electrosphere_FluidSim
* Method: advectDensity
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_advectDensity
(JNIEnv *, jobject, jint, jint, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jobjectArray, jfloat, jfloat, jfloat);
/*
* Class: electrosphere_FluidSim
* Method: setBoundsToNeighbors
* Signature: (III[Ljava/nio/ByteBuffer;)V
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_setBoundsToNeighbors
(JNIEnv *, jobject, jint, jint, jint, jobjectArray);
/*
* Class: electrosphere_FluidSim
* Method: copyNeighbors
* Signature: (IIII[Ljava/nio/ByteBuffer;)V
*/
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_copyNeighbors
(JNIEnv *, jobject, jint, jint, jint, jint, jobjectArray);
#ifdef __cplusplus
}

View File

@ -1,101 +0,0 @@
#ifndef MAINFUNC
#define MAINFUNC
/*
* Class: electrosphere_FluidSim
* Method: addSourceToVectors
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
static inline void addSourceToVectors
(int, int, float **, float **, float **, float **, float **, float **, float, float, float);
/*
* Class: electrosphere_FluidSim
* Method: solveVectorDiffuse
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
static inline void solveVectorDiffuse
(int, int, float **, float **, float **, float **, float **, float **, float, float, float);
/*
* Class: electrosphere_FluidSim
* Method: setupProjection
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
static inline void setupProjection
(
int N,
int chunk_mask,
float ** ur,
float ** vr,
float ** wr,
float ** pr,
float ** divr,
float DIFFUSION_CONST,
float VISCOSITY_CONST,
float dt);
/*
* Class: electrosphere_FluidSim
* Method: solveProjection
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
static inline void solveProjection
(int, int, float **, float **, float **, float **, float **, float **, float, float, float);
/*
* Class: electrosphere_FluidSim
* Method: finalizeProjection
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
static inline void finalizeProjection
(int, int, float **, float **, float **, float **, float **, float **, float, float, float);
/*
* Class: electrosphere_FluidSim
* Method: advectVectors
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
static inline void advectVectors
(int, int, float **, float **, float **, float **, float **, float **, float, float, float);
/*
* Class: electrosphere_FluidSim
* Method: addDensity
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;F)V
*/
static inline void addDensity
(int, int, float **, float **, float);
/*
* Class: electrosphere_FluidSim
* Method: solveDiffuseDensity
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
static inline void solveDiffuseDensity
(int, int, float **, float **, float **, float **, float **, float, float, float);
/*
* Class: electrosphere_FluidSim
* Method: advectDensity
* Signature: (II[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;[Ljava/nio/ByteBuffer;FFF)V
*/
static inline void advectDensity(uint32_t chunk_mask, int N, float ** d, float ** d0, float ** ur, float ** vr, float ** wr, float dt);
static inline void setBoundsToNeighborsRaw
(
int N,
int chunk_mask,
int vector_dir,
float ** neighborArray);
static inline void copyNeighborsRaw
(
int N,
int chunk_mask,
int cx,
int vector_dir,
float ** neighborArray);
#endif

View File

@ -1,8 +0,0 @@
#ifndef SIMULATION_H
#define SIMULATION_H
#include "./chunk.h"
void simulate(int numChunks, Chunk ** passedInChunks, float timestep);
#endif

View File

@ -1,3 +1,4 @@
#include <jni.h>
#include <stdint.h>
#ifndef UTILITIES_H
@ -6,7 +7,7 @@
#define SWAP(x0,x) {float *tmp=x0;x0=x;x=tmp;}
#define IX(i,j,k) ((i)+(N)*(j)+(N*N)*(k))
#define CK(m,n,o) ((m)+(n)*(3)+(o)*(3)*(3))
#define GET_ARR_RAW(src,i) src[i]
#define GET_ARR(env,src,i) (*env)->GetDirectBufferAddress(env,(*env)->GetObjectArrayElement(env,src,i))
#define ARR_EXISTS(chunk_mask,m,n,o) (chunk_mask & CHUNK_INDEX_ARR[CK(m,n,o)]) > 0
#endif

@ -1 +0,0 @@
Subproject commit ae721c50eaf761660b4f90cc590453cdb0c2acd0

View File

@ -1,61 +0,0 @@
#include <stdint.h>
#include "../includes/utilities.h"
#include "../includes/chunkmask.h"
const uint32_t CHUNK_INDEX_ARR[] = {
CHUNK_000, CHUNK_100, CHUNK_200,
CHUNK_010, CHUNK_110, CHUNK_210,
CHUNK_020, CHUNK_120, CHUNK_220,
CHUNK_001, CHUNK_101, CHUNK_201,
CHUNK_011, CHUNK_111, CHUNK_211,
CHUNK_021, CHUNK_121, CHUNK_221,
CHUNK_002, CHUNK_102, CHUNK_202,
CHUNK_012, CHUNK_112, CHUNK_212,
CHUNK_022, CHUNK_122, CHUNK_222,
};
//control offsetting the advect sampler location if a valid neighbor chunk is hit
const char CHUNK_NORMALIZE_U[] = {
1, 0, -1,
1, 0, -1,
1, 0, -1,
1, 0, -1,
1, 0, -1,
1, 0, -1,
1, 0, -1,
1, 0, -1,
1, 0, -1,
};
const char CHUNK_NORMALIZE_V[] = {
1, 1, 1,
0, 0, 0,
-1, -1, -1,
1, 1, 1,
0, 0, 0,
-1, -1, -1,
1, 1, 1,
0, 0, 0,
-1, -1, -1,
};
const char CHUNK_NORMALIZE_W[] = {
1, 1, 1,
1, 1, 1,
1, 1, 1,
0, 0, 0,
0, 0, 0,
0, 0, 0,
-1, -1, -1,
-1, -1, -1,
-1, -1, -1,
};

View File

@ -1,542 +0,0 @@
#include <stdint.h>
#include "../includes/utilities.h"
#include "../includes/chunkmask.h"
#include "../includes/electrosphere_FluidSim.h"
#include "../includes/mainFunctions.h"
#include "../includes/chunk.h"
#include "../includes/simulation.h"
#include "./chunkmask.c"
#include "./velocitystep.c"
#include "./densitystep.c"
#ifndef SAVE_STEPS
#define SAVE_STEPS 0
#endif
#define DIM 18
#define LINEARSOLVERTIMES 20
#define REALLY_SMALL_VALUE 0.00001
#define DIFFUSION_CONSTANT 0.00001
#define VISCOSITY_CONSTANT 0.00001
char fileNameBuff[50];
//all chunks
Chunk ** chunks = NULL;
//jni help:
//https://stackoverflow.com/questions/39823375/clarification-about-getfieldid
static inline void saveStep(float * values, const char * name);
void simulate(
int numChunks,
Chunk ** passedInChunks,
jfloat timestep
){
chunks = passedInChunks;
// printf("%p\n",chunks[0].d);
saveStep(chunks[0]->u[CENTER_LOC], "./chunks/beginU");
saveStep(chunks[0]->v[CENTER_LOC], "./chunks/beginV");
saveStep(chunks[0]->w[CENTER_LOC], "./chunks/beginW");
saveStep(chunks[0]->u0[CENTER_LOC], "./chunks/beginU0");
saveStep(chunks[0]->v0[CENTER_LOC], "./chunks/beginV0");
saveStep(chunks[0]->w0[CENTER_LOC], "./chunks/beginW0");
//solve chunk mask
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
addSourceToVectors(
DIM,
currentChunk->chunkMask,
currentChunk->u,
currentChunk->v,
currentChunk->w,
currentChunk->u0,
currentChunk->v0,
currentChunk->w0,
DIFFUSION_CONSTANT,
VISCOSITY_CONSTANT,
timestep
);
saveStep(currentChunk->u[CENTER_LOC], "./chunks/addSrcU");
saveStep(currentChunk->v[CENTER_LOC], "./chunks/addSrcV");
saveStep(currentChunk->w[CENTER_LOC], "./chunks/addSrcW");
saveStep(currentChunk->u0[CENTER_LOC], "./chunks/addSrcU0");
saveStep(currentChunk->v0[CENTER_LOC], "./chunks/addSrcV0");
saveStep(currentChunk->w0[CENTER_LOC], "./chunks/addSrcW0");
}
//swap all vector fields
{
//swap vector fields
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
float * tmpArr;
for(int j = 0; j < 27; j++){
tmpArr = currentChunk->u[j];
currentChunk->u[j] = currentChunk->u0[j];
currentChunk->u0[j] = tmpArr;
}
for(int j = 0; j < 27; j++){
tmpArr = currentChunk->v[j];
currentChunk->v[j] = currentChunk->v0[j];
currentChunk->v0[j] = tmpArr;
}
for(int j = 0; j < 27; j++){
tmpArr = currentChunk->w[j];
currentChunk->w[j] = currentChunk->w0[j];
currentChunk->w0[j] = tmpArr;
}
}
//copy neighbors
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,1,currentChunk->u);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,2,currentChunk->v);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,3,currentChunk->w);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,1,currentChunk->u0);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,2,currentChunk->v0);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,3,currentChunk->w0);
}
}
saveStep(chunks[0]->u[CENTER_LOC], "./chunks/swapU");
saveStep(chunks[0]->v[CENTER_LOC], "./chunks/swapV");
saveStep(chunks[0]->w[CENTER_LOC], "./chunks/swapW");
saveStep(chunks[0]->u0[CENTER_LOC], "./chunks/swapU0");
saveStep(chunks[0]->v0[CENTER_LOC], "./chunks/swapV0");
saveStep(chunks[0]->w0[CENTER_LOC], "./chunks/swapW0");
// printf("after swap vecs u\n");
// printLayer(chunks[0]->u[CENTER_LOC],targetLayer);
// printf("after swap vecs u0\n");
// printLayer(chunks[0]->u0[CENTER_LOC],targetLayer);
//solve vector diffusion
{
for(int l = 0; l < LINEARSOLVERTIMES; l++){
//solve vector diffusion
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
solveVectorDiffuse(DIM,currentChunk->chunkMask,currentChunk->u,currentChunk->v,currentChunk->w,currentChunk->u0,currentChunk->v0,currentChunk->w0,DIFFUSION_CONSTANT,VISCOSITY_CONSTANT,timestep);
}
if(SAVE_STEPS){
sprintf(fileNameBuff, "./chunks/diffuseUStep%dx", l);
saveStep(chunks[0]->u[CENTER_LOC], fileNameBuff);
sprintf(fileNameBuff, "./chunks/diffuseUStep%dx0", l);
saveStep(chunks[0]->u0[CENTER_LOC], fileNameBuff);
sprintf(fileNameBuff, "./chunks/diffuseVStep%dx", l);
saveStep(chunks[0]->v[CENTER_LOC], fileNameBuff);
sprintf(fileNameBuff, "./chunks/diffuseVStep%dx0", l);
saveStep(chunks[0]->v0[CENTER_LOC], fileNameBuff);
sprintf(fileNameBuff, "./chunks/diffuseWStep%dx", l);
saveStep(chunks[0]->w[CENTER_LOC], fileNameBuff);
sprintf(fileNameBuff, "./chunks/diffuseWStep%dx0", l);
saveStep(chunks[0]->w0[CENTER_LOC], fileNameBuff);
}
//update array for vectors
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,1,currentChunk->u);
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,2,currentChunk->v);
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,3,currentChunk->w);
// setBoundsToNeighborsRaw(DIM,chunkMask,1,currentChunk->u0);
// setBoundsToNeighborsRaw(DIM,chunkMask,2,currentChunk->v0);
// setBoundsToNeighborsRaw(DIM,chunkMask,3,currentChunk->w0);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,0,currentChunk->u);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,0,currentChunk->v);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,0,currentChunk->w);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,0,currentChunk->u0);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,0,currentChunk->v0);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,0,currentChunk->w0);
}
if(SAVE_STEPS){
sprintf(fileNameBuff, "./chunks/diffuseUStep%dxBnd", l);
saveStep(chunks[0]->u[CENTER_LOC], fileNameBuff);
sprintf(fileNameBuff, "./chunks/diffuseUStep%dx0Bnd", l);
saveStep(chunks[0]->u0[CENTER_LOC], fileNameBuff);
sprintf(fileNameBuff, "./chunks/diffuseVStep%dxBnd", l);
saveStep(chunks[0]->v[CENTER_LOC], fileNameBuff);
sprintf(fileNameBuff, "./chunks/diffuseVStep%dx0Bnd", l);
saveStep(chunks[0]->v0[CENTER_LOC], fileNameBuff);
sprintf(fileNameBuff, "./chunks/diffuseWStep%dxBnd", l);
saveStep(chunks[0]->w[CENTER_LOC], fileNameBuff);
sprintf(fileNameBuff, "./chunks/diffuseWStep%dx0Bnd", l);
saveStep(chunks[0]->w0[CENTER_LOC], fileNameBuff);
}
}
}
saveStep(chunks[0]->u[CENTER_LOC], "./chunks/diffuseU");
saveStep(chunks[0]->v[CENTER_LOC], "./chunks/diffuseV");
saveStep(chunks[0]->w[CENTER_LOC], "./chunks/diffuseW");
saveStep(chunks[0]->u0[CENTER_LOC], "./chunks/diffuseU0");
saveStep(chunks[0]->v0[CENTER_LOC], "./chunks/diffuseV0");
saveStep(chunks[0]->w0[CENTER_LOC], "./chunks/diffuseW0");
//solve projection
{
//update array for vectors
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
// setBoundsToNeighborsRaw(DIM,chunkMask,1,currentChunk->u);
// setBoundsToNeighborsRaw(DIM,chunkMask,2,currentChunk->v);
// setBoundsToNeighborsRaw(DIM,chunkMask,3,currentChunk->w);
// setBoundsToNeighborsRaw(DIM,chunkMask,1,currentChunk->u0);
// setBoundsToNeighborsRaw(DIM,chunkMask,2,currentChunk->v0);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,1,currentChunk->u);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,2,currentChunk->v);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,3,currentChunk->w);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,1,currentChunk->u0);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,2,currentChunk->v0);
}
//setup projection
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
setupProjection(DIM,currentChunk->chunkMask,currentChunk->u,currentChunk->v,currentChunk->w,currentChunk->u0,currentChunk->v0,DIFFUSION_CONSTANT,VISCOSITY_CONSTANT,timestep);
}
saveStep(chunks[0]->v0[CENTER_LOC], "./chunks/setupProj1Div");
saveStep(chunks[0]->u0[CENTER_LOC], "./chunks/setupProj1P");
//update array for vectors
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,0,currentChunk->u0);
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,0,currentChunk->v0);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,0,currentChunk->u0);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,0,currentChunk->v0);
}
saveStep(chunks[0]->v0[CENTER_LOC], "./chunks/setupProj1DivBnd");
saveStep(chunks[0]->u0[CENTER_LOC], "./chunks/setupProj1PBnd");
//samples u0, v0
//sets u0
//these should have just been mirrored in the above
//
//Perform main projection solver
for(int l = 0; l < LINEARSOLVERTIMES; l++){
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
solveProjection(DIM,currentChunk->chunkMask,currentChunk->u,currentChunk->v,currentChunk->w,currentChunk->u0,currentChunk->v0,currentChunk->w0,DIFFUSION_CONSTANT,VISCOSITY_CONSTANT,timestep);
}
if(SAVE_STEPS){
sprintf(fileNameBuff, "./chunks/proj1Step%dx", l);
saveStep(chunks[0]->u0[CENTER_LOC], fileNameBuff);
sprintf(fileNameBuff, "./chunks/proj1Step%dx0", l);
saveStep(chunks[0]->v0[CENTER_LOC], fileNameBuff);
}
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,0,currentChunk->u0);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,0,currentChunk->u0);
}
if(SAVE_STEPS){
sprintf(fileNameBuff, "./chunks/proj1Step%dxBnd", l);
saveStep(chunks[0]->u0[CENTER_LOC], fileNameBuff);
sprintf(fileNameBuff, "./chunks/proj1Step%dx0Bnd", l);
saveStep(chunks[0]->v0[CENTER_LOC], fileNameBuff);
}
}
//samples u,v,w,u0
//sets u,v,w
//Finalize projection
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
finalizeProjection(DIM,currentChunk->chunkMask,currentChunk->u,currentChunk->v,currentChunk->w,currentChunk->u0,currentChunk->v0,currentChunk->w0,DIFFUSION_CONSTANT,VISCOSITY_CONSTANT,timestep);
}
saveStep(chunks[0]->u[CENTER_LOC], "./chunks/finalizeProj1U");
saveStep(chunks[0]->v[CENTER_LOC], "./chunks/finalizeProj1V");
saveStep(chunks[0]->w[CENTER_LOC], "./chunks/finalizeProj1W");
// exit(0);
//set boundaries a final time for u,v,w
//...
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,1,currentChunk->u);
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,2,currentChunk->v);
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,3,currentChunk->w);
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,1,currentChunk->u0);
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,2,currentChunk->v0);
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,3,currentChunk->w0);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,1,currentChunk->u);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,2,currentChunk->v);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,3,currentChunk->w);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,1,currentChunk->u0);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,2,currentChunk->v0);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,3,currentChunk->w0);
}
}
saveStep(chunks[0]->u[CENTER_LOC], "./chunks/projU");
saveStep(chunks[0]->v[CENTER_LOC], "./chunks/projV");
saveStep(chunks[0]->w[CENTER_LOC], "./chunks/projW");
saveStep(chunks[0]->u0[CENTER_LOC], "./chunks/projU0");
saveStep(chunks[0]->v0[CENTER_LOC], "./chunks/projV0");
saveStep(chunks[0]->w0[CENTER_LOC], "./chunks/projW0");
// exit(0);
//swap all vector fields
{
//swap vector fields
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
float * tmpArr;
for(int j = 0; j < 27; j++){
tmpArr = currentChunk->u[j];
currentChunk->u[j] = currentChunk->u0[j];
currentChunk->u0[j] = tmpArr;
}
for(int j = 0; j < 27; j++){
tmpArr = currentChunk->v[j];
currentChunk->v[j] = currentChunk->v0[j];
currentChunk->v0[j] = tmpArr;
}
for(int j = 0; j < 27; j++){
tmpArr = currentChunk->w[j];
currentChunk->w[j] = currentChunk->w0[j];
currentChunk->w0[j] = tmpArr;
}
}
//copy neighbors
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,1,currentChunk->u);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,2,currentChunk->v);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,3,currentChunk->w);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,1,currentChunk->u0);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,2,currentChunk->v0);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,3,currentChunk->w0);
}
}
saveStep(chunks[0]->u[CENTER_LOC], "./chunks/swap2U");
saveStep(chunks[0]->v[CENTER_LOC], "./chunks/swap2V");
saveStep(chunks[0]->w[CENTER_LOC], "./chunks/swap2W");
saveStep(chunks[0]->u0[CENTER_LOC], "./chunks/swap2U0");
saveStep(chunks[0]->v0[CENTER_LOC], "./chunks/swap2V0");
saveStep(chunks[0]->w0[CENTER_LOC], "./chunks/swap2W0");
//advect vectors across boundaries
{
//update border arrs
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,1,currentChunk->u);
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,2,currentChunk->v);
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,3,currentChunk->w);
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,1,currentChunk->u0);
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,2,currentChunk->v0);
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,3,currentChunk->w0);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,1,currentChunk->u);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,2,currentChunk->v);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,3,currentChunk->w);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,1,currentChunk->u0);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,2,currentChunk->v0);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,3,currentChunk->w0);
}
//advect
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
advectVectors(DIM,currentChunk->chunkMask,currentChunk->u,currentChunk->v,currentChunk->w,currentChunk->u0,currentChunk->v0,currentChunk->w0,DIFFUSION_CONSTANT,VISCOSITY_CONSTANT,timestep);
}
//update neighbor arr
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,1,currentChunk->u);
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,2,currentChunk->v);
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,3,currentChunk->w);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,1,currentChunk->u);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,2,currentChunk->v);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,3,currentChunk->w);
}
}
saveStep(chunks[0]->u[CENTER_LOC], "./chunks/advectU");
saveStep(chunks[0]->v[CENTER_LOC], "./chunks/advectV");
saveStep(chunks[0]->w[CENTER_LOC], "./chunks/advectW");
saveStep(chunks[0]->u0[CENTER_LOC], "./chunks/advectU0");
saveStep(chunks[0]->v0[CENTER_LOC], "./chunks/advectV0");
saveStep(chunks[0]->w0[CENTER_LOC], "./chunks/advectW0");
//solve projection
{
//update array for vectors
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,1,currentChunk->u);
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,2,currentChunk->v);
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,3,currentChunk->w);
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,1,currentChunk->u0);
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,2,currentChunk->v0);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,1,currentChunk->u);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,2,currentChunk->v);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,3,currentChunk->w);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,1,currentChunk->u0);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,2,currentChunk->v0);
}
//setup projection
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
setupProjection(DIM,currentChunk->chunkMask,currentChunk->u,currentChunk->v,currentChunk->w,currentChunk->u0,currentChunk->v0,DIFFUSION_CONSTANT,VISCOSITY_CONSTANT,timestep);
}
//update array for vectors
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,1,currentChunk->u0);
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,2,currentChunk->v0);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,1,currentChunk->u0);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,2,currentChunk->v0);
}
//samples u0, v0
//sets u0
//these should have just been mirrored in the above
//
//Perform main projection solver
for(int l = 0; l < LINEARSOLVERTIMES; l++){
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
solveProjection(DIM,currentChunk->chunkMask,currentChunk->u,currentChunk->v,currentChunk->w,currentChunk->u0,currentChunk->v0,currentChunk->w0,DIFFUSION_CONSTANT,VISCOSITY_CONSTANT,timestep);
}
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,0,currentChunk->u0);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,0,currentChunk->u0);
}
}
//samples u,v,w,u0
//sets u,v,w
//Finalize projection
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
finalizeProjection(DIM,currentChunk->chunkMask,currentChunk->u,currentChunk->v,currentChunk->w,currentChunk->u0,currentChunk->v0,currentChunk->w0,DIFFUSION_CONSTANT,VISCOSITY_CONSTANT,timestep);
}
//set boundaries a final time for u,v,w
//...
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,1,currentChunk->u);
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,2,currentChunk->v);
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,3,currentChunk->w);
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,1,currentChunk->u0);
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,2,currentChunk->v0);
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,3,currentChunk->w0);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,1,currentChunk->u);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,2,currentChunk->v);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,3,currentChunk->w);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,1,currentChunk->u0);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,2,currentChunk->v0);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,3,currentChunk->w0);
}
}
///------------------------------------------------------------------------------------------------------------------------------------------------------------------------
///------------------------------------------------------------------------------------------------------------------------------------------------------------------------
///------------------------------------------------------------------------------------------------------------------------------------------------------------------------
///------------------------------------------------------------------------------------------------------------------------------------------------------------------------
///------------------------------------------------------------------------------------------------------------------------------------------------------------------------
//add density
{
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
addDensity(DIM,currentChunk->chunkMask,currentChunk->d,currentChunk->d0,timestep);
}
}
//swap all density arrays
{
//swap vector fields
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
float * tmpArr;
for(int j = 0; j < 27; j++){
tmpArr = currentChunk->d[j];
currentChunk->d[j] = currentChunk->d0[j];
currentChunk->d0[j] = tmpArr;
}
}
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,0,currentChunk->d);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,0,currentChunk->d0);
}
}
//diffuse density
{
for(int l = 0; l < LINEARSOLVERTIMES; l++){
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
solveDiffuseDensity(DIM,currentChunk->chunkMask,currentChunk->d,currentChunk->d0,currentChunk->u,currentChunk->v,currentChunk->w,DIFFUSION_CONSTANT,VISCOSITY_CONSTANT,timestep);
}
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,0,currentChunk->d);
}
}
}
//swap all density arrays
{
//swap vector fields
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
float * tmpArr;
for(int j = 0; j < 27; j++){
tmpArr = currentChunk->d[j];
currentChunk->d[j] = currentChunk->d0[j];
currentChunk->d0[j] = tmpArr;
}
}
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,0,currentChunk->d);
copyNeighborsRaw(DIM,currentChunk->chunkMask,0,0,currentChunk->d0);
}
}
//advect density
{
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
advectDensity(currentChunk->chunkMask,DIM,currentChunk->d,currentChunk->d0,currentChunk->u,currentChunk->v,currentChunk->w,timestep);
}
}
//mirror densities
{
for(int i = 0; i < numChunks; i++){
Chunk * currentChunk = chunks[i];
setBoundsToNeighborsRaw(DIM,currentChunk->chunkMask,0,currentChunk->d);
}
}
}
static inline void saveStep(float * values, const char * name){
if(SAVE_STEPS){
FILE *fp;
int N = DIM;
// ... fill the array somehow ...
fp = fopen(name, "w");
// check for error here
for(int x = 0; x < DIM; x++){
for(int y = 0; y < DIM; y++){
for(int z = 0; z < DIM; z++){
float val = values[IX(x,y,z)];
if(val < REALLY_SMALL_VALUE && val > -REALLY_SMALL_VALUE){
val = 0;
}
fprintf(fp, "%f\t", val);
}
fprintf(fp, "\n");
}
fprintf(fp, "\n");
}
fclose(fp);
}
}

View File

@ -1,170 +0,0 @@
#include <jni.h>
//library includes
//include stb ds
#define STB_DS_IMPLEMENTATION
#include "../lib/stb/stb_ds.h"
//local includes
#include "../includes/chunk.h"
#include "../includes/chunkmask.h"
#include "../includes/utilities.h"
#include "../includes/simulation.h"
//defines
//function defines
#define getChunk(i) (*env)->CallObjectMethod(env,chunkList,jListGet,i)
#define getBuffArr(buffId) (*env)->GetObjectField(env,chunkJRaw,buffId)
#define setBuffArr(buffId,value) (*env)->SetObjectField(env,chunkJRaw,buffId,value)
#define GET_ARR(env,src,i) (*env)->GetDirectBufferAddress(env,(*env)->GetObjectArrayElement(env,src,i))
//declarations
void readInChunks(JNIEnv * env, jobject chunkList);
int calculateChunkMask(JNIEnv * env, jobjectArray jrx);
uint32_t matrix_transform(JNIEnv * env, jobjectArray jrx);
//the list of chunks
Chunk ** javaChunkView = NULL;
//the number of chunks
int numChunks = 0;
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_simulate(
JNIEnv * env,
jclass fluidSimClass,
jobject chunkList,
jfloat dt
){
readInChunks(env,chunkList);
simulate(numChunks,javaChunkView,dt);
}
/**
* Reads chunks into the dynamic array
*/
void readInChunks(JNIEnv * env, jobject chunkList){
jclass listClass = (*env)->FindClass(env,"java/util/List");
jclass fluidSimClass = (*env)->FindClass(env,"electrosphere/FluidSim");
//JNIEnv *env, jclass clazz, const char *name, const char *sig
jmethodID jListSize = (*env)->GetMethodID(env, listClass, "size", "()I");
jmethodID jListGet = (*env)->GetMethodID(env, listClass, "get", "(I)Ljava/lang/Object;");
jmethodID jListAdd = (*env)->GetMethodID(env, listClass, "add", "(Ljava/lang/Object;)Z");
//ByteBuffer[]
jfieldID dJId = (*env)->GetFieldID(env,fluidSimClass,"density","[Ljava/nio/ByteBuffer;");
jfieldID d0JId = (*env)->GetFieldID(env,fluidSimClass,"densityAddition","[Ljava/nio/ByteBuffer;");
jfieldID uJId = (*env)->GetFieldID(env,fluidSimClass,"uVector","[Ljava/nio/ByteBuffer;");
jfieldID vJId = (*env)->GetFieldID(env,fluidSimClass,"vVector","[Ljava/nio/ByteBuffer;");
jfieldID wJId = (*env)->GetFieldID(env,fluidSimClass,"wVector","[Ljava/nio/ByteBuffer;");
jfieldID u0JId = (*env)->GetFieldID(env,fluidSimClass,"uAdditionVector","[Ljava/nio/ByteBuffer;");
jfieldID v0JId = (*env)->GetFieldID(env,fluidSimClass,"vAdditionVector","[Ljava/nio/ByteBuffer;");
jfieldID w0JId = (*env)->GetFieldID(env,fluidSimClass,"wAdditionVector","[Ljava/nio/ByteBuffer;");
jfieldID chunkmaskJId = (*env)->GetFieldID(env,fluidSimClass,"chunkMask","I");
//the number of chunks
numChunks = (*env)->CallIntMethod(env,chunkList,jListSize);
//current chunk (this)
jobject chunkJRaw;
//current chunk fields
jobjectArray jd;
jobjectArray jd0;
jobjectArray u;
jobjectArray v;
jobjectArray w;
jobjectArray u0;
jobjectArray v0;
jobjectArray w0;
int chunkMask;
//solve chunk mask
for(int i = 0; i < numChunks; i++){
chunkJRaw = getChunk(i);
chunkMask = calculateChunkMask(env,getBuffArr(dJId));
(*env)->SetIntField(env,chunkJRaw,chunkmaskJId,chunkMask);
Chunk * newChunk;
if(i >= stbds_arrlen(javaChunkView)){
// printf("allocate chunk %d\n",i);
// fflush(stdout);
newChunk = (Chunk *)malloc(sizeof(Chunk));
// printf("new chunk %p\n",newChunk);
// fflush(stdout);
stbds_arrput(javaChunkView,newChunk);
// printf("new chunk %p\n",chunks[i]);
// fflush(stdout);
} else {
newChunk = javaChunkView[i];
// printf("get chunk %d: %p\n",i,newChunk);
// fflush(stdout);
}
jd = (*env)->GetObjectField(env,chunkJRaw,dJId);
jd0 = (*env)->GetObjectField(env,chunkJRaw,d0JId);
u = (*env)->GetObjectField(env,chunkJRaw,uJId);
v = (*env)->GetObjectField(env,chunkJRaw,vJId);
w = (*env)->GetObjectField(env,chunkJRaw,wJId);
u0 = (*env)->GetObjectField(env,chunkJRaw,u0JId);
v0 = (*env)->GetObjectField(env,chunkJRaw,v0JId);
w0 = (*env)->GetObjectField(env,chunkJRaw,w0JId);
newChunk->chunkMask = chunkMask;
for(int j = 0; j < 27; j++){
if((chunkMask & CHUNK_INDEX_ARR[j]) > 0){
newChunk->d[j] = GET_ARR(env,jd,j);
newChunk->d0[j] = GET_ARR(env,jd0,j);
newChunk->u[j] = GET_ARR(env,u,j);
newChunk->v[j] = GET_ARR(env,v,j);
newChunk->w[j] = GET_ARR(env,w,j);
newChunk->u0[j] = GET_ARR(env,u0,j);
newChunk->v0[j] = GET_ARR(env,v0,j);
newChunk->w0[j] = GET_ARR(env,w0,j);
}
}
}
}
/**
* Calculates the bitmask for available chunks for the provided chunk's neighbor array
*/
int calculateChunkMask(JNIEnv * env, jobjectArray jrx){
return matrix_transform(env,jrx);
}
/**
* Calculates a mask that represents all nearby chunks that are actually accessible and exist
*/
uint32_t matrix_transform(JNIEnv * env, jobjectArray jrx){
//The returned value, an availability mask that contains the availability of each neighbor chunk
uint32_t rVal = 0;
//Add to maks for initial chunks
for(int i = 0; i < CENTER_LOC; i++){
if((*env)->GetObjectArrayElement(env,jrx,i)!=NULL){
rVal = rVal + 1;
}
rVal = rVal << 1;
}
//add 1 for center chunk because we already have that
rVal = rVal + 1;
rVal = rVal << 1;
//continue on for remaining chunks
for(int i = CENTER_LOC+1; i < 27; i++){
if((*env)->GetObjectArrayElement(env,jrx,i)!=NULL){
rVal = rVal + 1;
}
if(i < 26){
rVal = rVal << 1;
}
}
return rVal;
}

View File

@ -1,9 +1,10 @@
#include <jni.h>
#include <stdio.h>
#include <immintrin.h>
#include <stdint.h>
#include "../includes/utilities.h"
#include "../includes/chunkmask.h"
#include "includes/utilities.h"
#include "includes/chunkmask.h"
#define BOUND_NO_DIR 0
@ -14,37 +15,33 @@
#define SET_BOUND_IGNORE 0
#define SET_BOUND_USE_NEIGHBOR 1
#define LINEARSOLVERTIMES 20
static inline void add_source(int N, float * x, float * s, float dt);
static inline void advect(uint32_t chunk_mask, int N, int b, float ** jrd, float ** jrd0, float * u, float * v, float * w, float dt);
void add_source(int N, float * x, float * s, float dt);
void advect(JNIEnv * env, uint32_t chunk_mask, int N, int b, jobjectArray jrd, jobjectArray jrd0, float * u, float * v, float * w, float dt);
/*
* Adds force to all vectors
*/
static inline void addSourceToVectors
(
int N,
int chunk_mask,
float ** jru,
float ** jrv,
float ** jrw,
float ** jru0,
float ** jrv0,
float ** jrw0,
float DIFFUSION_CONST,
float VISCOSITY_CONST,
float dt){
add_source(N,GET_ARR_RAW(jru,CENTER_LOC),GET_ARR_RAW(jru0,CENTER_LOC),dt);
add_source(N,GET_ARR_RAW(jrv,CENTER_LOC),GET_ARR_RAW(jrv0,CENTER_LOC),dt);
add_source(N,GET_ARR_RAW(jrw,CENTER_LOC),GET_ARR_RAW(jrw0,CENTER_LOC),dt);
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_addSourceToVectors
(JNIEnv * env,
jobject this,
jint N,
jint chunk_mask,
jobjectArray jru,
jobjectArray jrv,
jobjectArray jrw,
jobjectArray jru0,
jobjectArray jrv0,
jobjectArray jrw0,
jfloat DIFFUSION_CONST,
jfloat VISCOSITY_CONST,
jfloat dt){
add_source(N,GET_ARR(env,jru,CENTER_LOC),GET_ARR(env,jru0,CENTER_LOC),dt);
add_source(N,GET_ARR(env,jrv,CENTER_LOC),GET_ARR(env,jrv0,CENTER_LOC),dt);
add_source(N,GET_ARR(env,jrw,CENTER_LOC),GET_ARR(env,jrw0,CENTER_LOC),dt);
}
/**
* Adds from a source array to a destination array
*/
static inline void add_source(int N, float * x, float * s, float dt){
void add_source(int N, float * x, float * s, float dt){
int i;
int size=N*N*N;
for(i=0; i<size; i++){
@ -55,28 +52,29 @@ static inline void add_source(int N, float * x, float * s, float dt){
/*
* Solves vector diffusion along all axis
*/
static inline void solveVectorDiffuse (
int N,
int chunk_mask,
float ** jru,
float ** jrv,
float ** jrw,
float ** jru0,
float ** jrv0,
float ** jrw0,
float DIFFUSION_CONST,
float VISCOSITY_CONST,
float dt
){
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_solveVectorDiffuse
(JNIEnv * env,
jobject this,
jint N,
jint chunk_mask,
jobjectArray jru,
jobjectArray jrv,
jobjectArray jrw,
jobjectArray jru0,
jobjectArray jrv0,
jobjectArray jrw0,
jfloat DIFFUSION_CONST,
jfloat VISCOSITY_CONST,
jfloat dt){
float a=dt*VISCOSITY_CONST*N*N*N;
float c=1+6*a;
int i, j, k, l, m;
float * u = GET_ARR_RAW(jru,CENTER_LOC);
float * v = GET_ARR_RAW(jrv,CENTER_LOC);
float * w = GET_ARR_RAW(jrw,CENTER_LOC);
float * u0 = GET_ARR_RAW(jru0,CENTER_LOC);
float * v0 = GET_ARR_RAW(jrv0,CENTER_LOC);
float * w0 = GET_ARR_RAW(jrw0,CENTER_LOC);
float * u = GET_ARR(env,jru,CENTER_LOC);
float * v = GET_ARR(env,jrv,CENTER_LOC);
float * w = GET_ARR(env,jrw,CENTER_LOC);
float * u0 = GET_ARR(env,jru0,CENTER_LOC);
float * v0 = GET_ARR(env,jrv0,CENTER_LOC);
float * w0 = GET_ARR(env,jrw0,CENTER_LOC);
__m256 aScalar = _mm256_set1_ps(a);
__m256 cScalar = _mm256_set1_ps(c);
@ -163,31 +161,35 @@ static inline void solveVectorDiffuse (
/*
* Sets up a projection system of equations
*/
static inline void setupProjection(
int N,
int chunk_mask,
float ** ur,
float ** vr,
float ** wr,
float ** pr,
float ** divr,
float DIFFUSION_CONST,
float VISCOSITY_CONST,
float dt
){
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_setupProjection
(JNIEnv * env,
jobject this,
jint N,
jint chunk_mask,
jobjectArray jru,
jobjectArray jrv,
jobjectArray jrw,
jobjectArray jru0,
jobjectArray jrv0,
jobjectArray jrw0,
jfloat DIFFUSION_CONST,
jfloat VISCOSITY_CONST,
jfloat dt){
int i, j, k;
__m256 nVector = _mm256_set1_ps(N);
__m256 xVector = _mm256_set1_ps(N);
__m256 yVector = _mm256_set1_ps(N);
__m256 zVector = _mm256_set1_ps(N);
__m256 constScalar = _mm256_set1_ps(-1.0/3.0);
__m256 zeroVec = _mm256_set1_ps(0);
__m256 vector, vector2, vector3;
float * u = GET_ARR_RAW(ur,CENTER_LOC);
float * v = GET_ARR_RAW(vr,CENTER_LOC);
float * w = GET_ARR_RAW(wr,CENTER_LOC);
float * u = GET_ARR(env,jru,CENTER_LOC);
float * v = GET_ARR(env,jrv,CENTER_LOC);
float * w = GET_ARR(env,jrw,CENTER_LOC);
float * p = GET_ARR_RAW(pr,CENTER_LOC);
float * div = GET_ARR_RAW(divr,CENTER_LOC);
float * p = GET_ARR(env,jru0,CENTER_LOC);
float * div = GET_ARR(env,jrv0,CENTER_LOC);
float scalar = 1.0/3.0;
float h = 1.0/N;
@ -201,15 +203,15 @@ static inline void setupProjection(
//first part
vector = _mm256_loadu_ps(&u[IX(i+1,j,k)]);
vector = _mm256_sub_ps(vector,_mm256_loadu_ps(&u[IX(i-1,j,k)]));
vector = _mm256_div_ps(vector,nVector);
vector = _mm256_div_ps(vector,xVector);
//second part
vector2 = _mm256_loadu_ps(&v[IX(i,j+1,k)]);
vector2 = _mm256_sub_ps(vector2,_mm256_loadu_ps(&v[IX(i,j-1,k)]));
vector2 = _mm256_div_ps(vector2,nVector);
vector2 = _mm256_div_ps(vector2,yVector);
//third part
vector3 = _mm256_loadu_ps(&w[IX(i,j,k+1)]);
vector3 = _mm256_sub_ps(vector3,_mm256_loadu_ps(&w[IX(i,j,k-1)]));
vector3 = _mm256_div_ps(vector3,nVector);
vector3 = _mm256_div_ps(vector3,zVector);
//multiply and finalize
vector = _mm256_add_ps(vector,_mm256_add_ps(vector2,vector3));
vector = _mm256_mul_ps(vector,constScalar);
@ -223,15 +225,15 @@ static inline void setupProjection(
//first part
vector = _mm256_loadu_ps(&u[IX(i+1,j,k)]);
vector = _mm256_sub_ps(vector,_mm256_loadu_ps(&u[IX(i-1,j,k)]));
vector = _mm256_div_ps(vector,nVector);
vector = _mm256_div_ps(vector,xVector);
//second part
vector2 = _mm256_loadu_ps(&v[IX(i,j+1,k)]);
vector2 = _mm256_sub_ps(vector2,_mm256_loadu_ps(&v[IX(i,j-1,k)]));
vector2 = _mm256_div_ps(vector2,nVector);
vector2 = _mm256_div_ps(vector2,yVector);
//third part
vector3 = _mm256_loadu_ps(&w[IX(i,j,k+1)]);
vector3 = _mm256_sub_ps(vector3,_mm256_loadu_ps(&w[IX(i,j,k-1)]));
vector3 = _mm256_div_ps(vector3,nVector);
vector3 = _mm256_div_ps(vector3,zVector);
//multiply and finalize
vector = _mm256_add_ps(vector,_mm256_add_ps(vector2,vector3));
vector = _mm256_mul_ps(vector,constScalar);
@ -239,6 +241,14 @@ static inline void setupProjection(
_mm256_storeu_ps(&div[IX(i,j,k)],vector);
_mm256_storeu_ps(&p[IX(i,j,k)],zeroVec);
// for(i = 1; i < N - 1; i++){
// div[IX(i,j,k)] =
// -scalar*h*(u[IX(i+1,j,k)]-u[IX(i-1,j,k)]+
// v[IX(i,j+1,k)]-v[IX(i,j-1,k)]+
// w[IX(i,j,k+1)]-w[IX(i,j,k-1)]);
// p[IX(i,j,k)] = 0;
// }
}
}
}
@ -246,27 +256,28 @@ static inline void setupProjection(
/*
* Solves a projection system of equations
*/
static inline void solveProjection(
int N,
int chunk_mask,
float ** jru,
float ** jrv,
float ** jrw,
float ** jru0,
float ** jrv0,
float ** jrw0,
float DIFFUSION_CONST,
float VISCOSITY_CONST,
float dt
){
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_solveProjection
(JNIEnv * env,
jobject this,
jint N,
jint chunk_mask,
jobjectArray jru,
jobjectArray jrv,
jobjectArray jrw,
jobjectArray jru0,
jobjectArray jrv0,
jobjectArray jrw0,
jfloat DIFFUSION_CONST,
jfloat VISCOSITY_CONST,
jfloat dt){
int a = 1;
int c = 6;
int i, j, k, l, m;
__m256 aScalar = _mm256_set1_ps(a);
__m256 cScalar = _mm256_set1_ps(c);
float * p = GET_ARR_RAW(jru0,CENTER_LOC);
float * div = GET_ARR_RAW(jrv0,CENTER_LOC);
float * p = GET_ARR(env,jru0,CENTER_LOC);
float * div = GET_ARR(env,jrv0,CENTER_LOC);
// update for each cell
for(k=1; k<N-1; k++){
for(j=1; j<N-1; j++){
@ -279,7 +290,7 @@ static inline void solveProjection(
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&p[IX(i,j+1,k)]));
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&p[IX(i,j,k-1)]));
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&p[IX(i,j,k+1)]));
vector = _mm256_mul_ps(vector,aScalar);
// vector = _mm256_mul_ps(vector,aScalar);
vector = _mm256_add_ps(vector,_mm256_loadu_ps(&div[IX(i,j,k)]));
vector = _mm256_div_ps(vector,cScalar);
_mm256_storeu_ps(&p[IX(i,j,k)],vector);
@ -290,6 +301,9 @@ static inline void solveProjection(
p[IX(i,j,k)] = (div[IX(i,j,k)] + a*(p[IX(i-1,j,k)]+p[IX(i+1,j,k)]+p[IX(i,j-1,k)]+p[IX(i,j+1,k)]+p[IX(i,j,k-1)]+p[IX(i,j,k+1)]))/c;
}
}
// for(i=1; i < N-1; i++){
// p[IX(i,j,k)] = (div[IX(i,j,k)] + a*(p[IX(i-1,j,k)]+p[IX(i+1,j,k)]+p[IX(i,j-1,k)]+p[IX(i,j+1,k)]+p[IX(i,j,k-1)]+p[IX(i,j,k+1)]))/c;
// }
}
}
}
@ -297,29 +311,35 @@ static inline void solveProjection(
/*
* Finalizes a projection (subtract curl, set bounds, etc)
*/
static inline void finalizeProjection(
int N,
int chunk_mask,
float ** jru,
float ** jrv,
float ** jrw,
float ** jru0,
float ** jrv0,
float ** jrw0,
float DIFFUSION_CONST,
float VISCOSITY_CONST,
float dt
){
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_finalizeProjection
(JNIEnv * env,
jobject this,
jint N,
jint chunk_mask,
jobjectArray jru,
jobjectArray jrv,
jobjectArray jrw,
jobjectArray jru0,
jobjectArray jrv0,
jobjectArray jrw0,
jfloat DIFFUSION_CONST,
jfloat VISCOSITY_CONST,
jfloat dt){
int i, j, k;
__m256 constScalar = _mm256_set1_ps(0.5f*N);
// __m256 constScalar = _mm256_set1_ps(0.5f*N);
__m256 xScalar = _mm256_set1_ps(0.5*N);
__m256 yScalar = _mm256_set1_ps(0.5*N);
__m256 zScalar = _mm256_set1_ps(0.5*N);
__m256 vector, vector2, vector3;
float * u = GET_ARR_RAW(jru,CENTER_LOC);
float * v = GET_ARR_RAW(jrv,CENTER_LOC);
float * w = GET_ARR_RAW(jrw,CENTER_LOC);
float * u = GET_ARR(env,jru,CENTER_LOC);
float * v = GET_ARR(env,jrv,CENTER_LOC);
float * w = GET_ARR(env,jrw,CENTER_LOC);
float * p = GET_ARR_RAW(jru0,CENTER_LOC);
float * div = GET_ARR_RAW(jrv0,CENTER_LOC);
float * p = GET_ARR(env,jru0,CENTER_LOC);
float * div = GET_ARR(env,jrv0,CENTER_LOC);
float h = 1.0 / N;
for ( k=1 ; k<N-1 ; k++ ) {
for ( j=1 ; j<N-1 ; j++ ) {
@ -330,14 +350,14 @@ static inline void finalizeProjection(
vector = _mm256_loadu_ps(&p[IX(1+1,j,k)]);
vector2 = _mm256_loadu_ps(&p[IX(1-1,j,k)]);
vector = _mm256_sub_ps(vector,vector2);
vector = _mm256_mul_ps(vector,constScalar);
vector = _mm256_mul_ps(vector,xScalar);
vector = _mm256_sub_ps(_mm256_loadu_ps(&u[IX(1,j,k)]),vector);
_mm256_storeu_ps(&u[IX(1,j,k)],vector);
//upper
vector = _mm256_loadu_ps(&p[IX(9+1,j,k)]);
vector2 = _mm256_loadu_ps(&p[IX(9-1,j,k)]);
vector = _mm256_sub_ps(vector,vector2);
vector = _mm256_mul_ps(vector,constScalar);
vector = _mm256_mul_ps(vector,xScalar);
vector = _mm256_sub_ps(_mm256_loadu_ps(&u[IX(9,j,k)]),vector);
_mm256_storeu_ps(&u[IX(9,j,k)],vector);
//
@ -347,14 +367,14 @@ static inline void finalizeProjection(
vector = _mm256_loadu_ps(&p[IX(1,j+1,k)]);
vector2 = _mm256_loadu_ps(&p[IX(1,j-1,k)]);
vector = _mm256_sub_ps(vector,vector2);
vector = _mm256_mul_ps(vector,constScalar);
vector = _mm256_mul_ps(vector,yScalar);
vector = _mm256_sub_ps(_mm256_loadu_ps(&v[IX(1,j,k)]),vector);
_mm256_storeu_ps(&v[IX(1,j,k)],vector);
//upper
vector = _mm256_loadu_ps(&p[IX(9,j+1,k)]);
vector2 = _mm256_loadu_ps(&p[IX(9,j-1,k)]);
vector = _mm256_sub_ps(vector,vector2);
vector = _mm256_mul_ps(vector,constScalar);
vector = _mm256_mul_ps(vector,yScalar);
vector = _mm256_sub_ps(_mm256_loadu_ps(&v[IX(9,j,k)]),vector);
_mm256_storeu_ps(&v[IX(9,j,k)],vector);
//
@ -364,16 +384,21 @@ static inline void finalizeProjection(
vector = _mm256_loadu_ps(&p[IX(1,j,k+1)]);
vector2 = _mm256_loadu_ps(&p[IX(1,j,k-1)]);
vector = _mm256_sub_ps(vector,vector2);
vector = _mm256_mul_ps(vector,constScalar);
vector = _mm256_mul_ps(vector,zScalar);
vector = _mm256_sub_ps(_mm256_loadu_ps(&w[IX(1,j,k)]),vector);
_mm256_storeu_ps(&w[IX(1,j,k)],vector);
//upper
vector = _mm256_loadu_ps(&p[IX(9,j,k+1)]);
vector2 = _mm256_loadu_ps(&p[IX(9,j,k-1)]);
vector = _mm256_sub_ps(vector,vector2);
vector = _mm256_mul_ps(vector,constScalar);
vector = _mm256_mul_ps(vector,zScalar);
vector = _mm256_sub_ps(_mm256_loadu_ps(&w[IX(9,j,k)]),vector);
_mm256_storeu_ps(&w[IX(9,j,k)],vector);
// for(i = 1; i < N-1; i++){
// u[IX(i,j,k)] = u[IX(i,j,k)] - 0.5 * (p[IX(i+1,j,k)] - p[IX(i-1,j,k)]) / h;
// v[IX(i,j,k)] = v[IX(i,j,k)] - 0.5 * (p[IX(i,j+1,k)] - p[IX(i,j-1,k)]) / h;
// w[IX(i,j,k)] = w[IX(i,j,k)] - 0.5 * (p[IX(i,j,k+1)] - p[IX(i,j,k-1)]) / h;
// }
}
}
}
@ -381,42 +406,41 @@ static inline void finalizeProjection(
/*
* Advects u, v, and w
*/
static inline void advectVectors(
int N,
int chunk_mask,
float ** jru,
float ** jrv,
float ** jrw,
float ** jru0,
float ** jrv0,
float ** jrw0,
float DIFFUSION_CONST,
float VISCOSITY_CONST,
float dt
){
advect(chunk_mask,N,1,jru,jru0,GET_ARR_RAW(jru0,CENTER_LOC),GET_ARR_RAW(jrv0,CENTER_LOC),GET_ARR_RAW(jrw0,CENTER_LOC),dt);
advect(chunk_mask,N,2,jrv,jrv0,GET_ARR_RAW(jru0,CENTER_LOC),GET_ARR_RAW(jrv0,CENTER_LOC),GET_ARR_RAW(jrw0,CENTER_LOC),dt);
advect(chunk_mask,N,3,jrw,jrw0,GET_ARR_RAW(jru0,CENTER_LOC),GET_ARR_RAW(jrv0,CENTER_LOC),GET_ARR_RAW(jrw0,CENTER_LOC),dt);
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_advectVectors
(JNIEnv * env,
jobject this,
jint N,
jint chunk_mask,
jobjectArray jru,
jobjectArray jrv,
jobjectArray jrw,
jobjectArray jru0,
jobjectArray jrv0,
jobjectArray jrw0,
jfloat DIFFUSION_CONST,
jfloat VISCOSITY_CONST,
jfloat dt){
advect(env,chunk_mask,N,1,jru,jru0,GET_ARR(env,jru0,CENTER_LOC),GET_ARR(env,jrv0,CENTER_LOC),GET_ARR(env,jrw0,CENTER_LOC),dt);
advect(env,chunk_mask,N,2,jrv,jrv0,GET_ARR(env,jru0,CENTER_LOC),GET_ARR(env,jrv0,CENTER_LOC),GET_ARR(env,jrw0,CENTER_LOC),dt);
advect(env,chunk_mask,N,3,jrw,jrw0,GET_ARR(env,jru0,CENTER_LOC),GET_ARR(env,jrv0,CENTER_LOC),GET_ARR(env,jrw0,CENTER_LOC),dt);
}
/**
* Actually performs the advection
*/
static inline void advect(uint32_t chunk_mask, int N, int b, float ** jrd, float ** jrd0, float * u, float * v, float * w, float dt){
void advect(JNIEnv * env, uint32_t chunk_mask, int N, int b, jobjectArray jrd, jobjectArray jrd0, float * u, float * v, float * w, float dt){
int i, j, k, i0, j0, k0, i1, j1, k1;
int m,n,o;
float x, y, z, s0, t0, s1, t1, u1, u0, dtx,dty,dtz;
dtx=dty=dtz=dt*N;
float * d = GET_ARR_RAW(jrd,CENTER_LOC);
float * d = GET_ARR(env,jrd,CENTER_LOC);
float * d0 = GET_ARR_RAW(jrd0,CENTER_LOC);
float * d0 = GET_ARR(env,jrd0,CENTER_LOC);
for(k=1; k<N-1; k++){
for(j=1; j<N-1; j++){
for(i=1; i<N-1; i++){
d0 = GET_ARR_RAW(jrd0,CENTER_LOC);
d0 = GET_ARR(env,jrd0,CENTER_LOC);
//calculate location to pull from
x = i-dtx*u[IX(i,j,k)];
y = j-dty*v[IX(i,j,k)];
@ -482,7 +506,7 @@ static inline void advect(uint32_t chunk_mask, int N, int b, float ** jrd, float
// printf("Hit other chunk\n");
d0 = GET_ARR_RAW(jrd0,CK(m,n,o));
d0 = GET_ARR(env,jrd0,CK(m,n,o));
x = x + CHUNK_NORMALIZE_U[CK(m,n,o)] * (N-2);
// printf("%d => %f\n",m,x);
y = y + CHUNK_NORMALIZE_V[CK(m,n,o)] * (N-2);
@ -644,31 +668,35 @@ static inline void advect(uint32_t chunk_mask, int N, int b, float ** jrd, float
}
}
/**
* Sets the bounds of this cube to those of its neighbor
*/
static inline void setBoundsToNeighborsRaw(
int N,
int chunk_mask,
int vector_dir,
float ** neighborArray
){
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_setBoundsToNeighbors
(JNIEnv * env,
jobject this,
jint N,
jint chunk_mask,
jint vector_dir,
jobjectArray neighborArray){
int DIM = N;
float * target = GET_ARR_RAW(neighborArray,CENTER_LOC);
float * target = GET_ARR(env,neighborArray,CENTER_LOC);
float * source;
//set the faces bounds
for(int x=1; x < DIM-1; x++){
for(int y = 1; y < DIM-1; y++){
target[IX(0,x,y)] = vector_dir==BOUND_DIR_U ? -target[IX(1,x,y)] : target[IX(1,x,y)];
}
}
for(int x=1; x < DIM-1; x++){
for(int y = 1; y < DIM-1; y++){
target[IX(DIM-1,x,y)] = vector_dir==BOUND_DIR_U ? -target[IX(DIM-2,x,y)] : target[IX(DIM-2,x,y)];
}
}
for(int x=1; x < DIM-1; x++){
for(int y = 1; y < DIM-1; y++){
//((x)+(DIM)*(y) + (DIM)*(DIM)*(z))
target[IX(0,x,y)] = vector_dir==BOUND_DIR_U ? -target[IX(1,x,y)] : target[IX(1,x,y)];
target[IX(DIM-1,x,y)] = vector_dir==BOUND_DIR_U ? -target[IX(DIM-2,x,y)] : target[IX(DIM-2,x,y)];
target[IX(x,0,y)] = vector_dir==BOUND_DIR_V ? -target[IX(x,1,y)] : target[IX(x,1,y)];
target[IX(x,DIM-1,y)] = vector_dir==BOUND_DIR_V ? -target[IX(x,DIM-2,y)] : target[IX(x,DIM-2,y)];
target[IX(x,y,0)] = vector_dir==BOUND_DIR_W ? -target[IX(x,y,1)] : target[IX(x,y,1)];
target[IX(x,y,DIM-1)] = vector_dir==BOUND_DIR_W ? -target[IX(x,y,DIM-2)] : target[IX(x,y,DIM-2)];
}
}
//sets the edges of the chunk
for(int x = 1; x < DIM-1; x++){
target[IX(x,0,0)] = (float)(0.5f * (target[IX(x,1,0)] + target[IX(x,0,1)]));
target[IX(x,DIM-1,0)] = (float)(0.5f * (target[IX(x,DIM-2,0)] + target[IX(x,DIM-1,1)]));
@ -687,7 +715,6 @@ static inline void setBoundsToNeighborsRaw(
target[IX(DIM-1,DIM-1,x)] = (float)(0.5f * (target[IX(DIM-2,DIM-1,x)] + target[IX(DIM-1,DIM-2,x)]));
}
//sets the corners of the chunk
target[IX(0,0,0)] = (float)((target[IX(1,0,0)]+target[IX(0,1,0)]+target[IX(0,0,1)])/3.0);
target[IX(DIM-1,0,0)] = (float)((target[IX(DIM-2,0,0)]+target[IX(DIM-1,1,0)]+target[IX(DIM-1,0,1)])/3.0);
target[IX(0,DIM-1,0)] = (float)((target[IX(1,DIM-1,0)]+target[IX(0,DIM-2,0)]+target[IX(0,DIM-1,1)])/3.0);
@ -698,19 +725,19 @@ static inline void setBoundsToNeighborsRaw(
target[IX(DIM-1,DIM-1,DIM-1)] = (float)((target[IX(DIM-1,DIM-1,DIM-2)]+target[IX(DIM-1,DIM-2,DIM-1)]+target[IX(DIM-1,DIM-1,DIM-2)])/3.0);
}
/**
* This exclusively copies neighbors to make sure zeroing out stuff doesn't break sim
*/
static inline void copyNeighborsRaw(
int N,
int chunk_mask,
int cx,
int vector_dir,
float ** neighborArray
){
JNIEXPORT void JNICALL Java_electrosphere_FluidSim_copyNeighbors
(JNIEnv * env,
jobject this,
jint N,
jint chunk_mask,
jint cx,
jint vector_dir,
jobjectArray neighborArray){
int DIM = N;
float * target = GET_ARR_RAW(neighborArray,CENTER_LOC);
float * target = GET_ARR(env,neighborArray,CENTER_LOC);
float * source;
@ -719,20 +746,9 @@ static inline void copyNeighborsRaw(
// PLANES
//
//
// __m512 transferVector;// = _mm512_set1_ps(0.5*N);
//__m256 vector = _mm256_loadu_ps(&p[IX(i-1,j,k)]);
//vector = _mm256_add_ps(vector,_mm256_loadu_ps(&p[IX(i+1,j,k)]));
//vector = _mm256_add_ps(vector,_mm256_loadu_ps(&p[IX(i,j-1,k)]));
//_mm256_storeu_ps(&p[IX(i,j,k)],vector);
//__m256
//_mm256_loadu_ps
//_mm256_storeu_ps
if(ARR_EXISTS(chunk_mask,0,1,1)){
source = GET_ARR_RAW(neighborArray,CK(0,1,1));
source = GET_ARR(env,neighborArray,CK(0,1,1));
for(int x=1; x < DIM-1; x++){
// transferVector = _mm512_loadu_ps(&source[IX(DIM-2,x,1)]);
// _mm512_storeu_ps(&target[IX(0,x,1)],_mm512_loadu_ps(&source[IX(DIM-2,x,1)]));
for(int y = 1; y < DIM-1; y++){
target[IX(0,x,y)] = source[IX(DIM-2,x,y)];
}
@ -740,9 +756,8 @@ static inline void copyNeighborsRaw(
}
if(ARR_EXISTS(chunk_mask,2,1,1)){
source = GET_ARR_RAW(neighborArray,CK(2,1,1));
source = GET_ARR(env,neighborArray,CK(2,1,1));
for(int x=1; x < DIM-1; x++){
// _mm512_storeu_ps(&target[IX(DIM-1,x,1)],_mm512_loadu_ps(&source[IX(1,x,1)]));
for(int y = 1; y < DIM-1; y++){
target[IX(DIM-1,x,y)] = source[IX(1,x,y)];
}
@ -750,7 +765,7 @@ static inline void copyNeighborsRaw(
}
if(ARR_EXISTS(chunk_mask,1,0,1)){
source = GET_ARR_RAW(neighborArray,CK(1,0,1));
source = GET_ARR(env,neighborArray,CK(1,0,1));
for(int x=1; x < DIM-1; x++){
for(int y = 1; y < DIM-1; y++){
target[IX(x,0,y)] = source[IX(x,DIM-2,y)];
@ -759,7 +774,7 @@ static inline void copyNeighborsRaw(
}
if(ARR_EXISTS(chunk_mask,1,2,1)){
source = GET_ARR_RAW(neighborArray,CK(1,2,1));
source = GET_ARR(env,neighborArray,CK(1,2,1));
for(int x=1; x < DIM-1; x++){
for(int y = 1; y < DIM-1; y++){
target[IX(x,DIM-1,y)] = source[IX(x,1,y)];
@ -768,7 +783,7 @@ static inline void copyNeighborsRaw(
}
if(ARR_EXISTS(chunk_mask,1,1,0)){
source = GET_ARR_RAW(neighborArray,CK(1,1,0));
source = GET_ARR(env,neighborArray,CK(1,1,0));
for(int x=1; x < DIM-1; x++){
for(int y = 1; y < DIM-1; y++){
target[IX(x,y,0)] = source[IX(x,y,DIM-2)];
@ -777,7 +792,7 @@ static inline void copyNeighborsRaw(
}
if(ARR_EXISTS(chunk_mask,1,1,2)){
source = GET_ARR_RAW(neighborArray,CK(1,1,2));
source = GET_ARR(env,neighborArray,CK(1,1,2));
for(int x=1; x < DIM-1; x++){
for(int y = 1; y < DIM-1; y++){
target[IX(x,y,DIM-1)] = source[IX(x,y,1)];
@ -792,28 +807,28 @@ static inline void copyNeighborsRaw(
//
//
if(ARR_EXISTS(chunk_mask,0,0,1)){
source = GET_ARR_RAW(neighborArray,CK(0,0,1));
source = GET_ARR(env,neighborArray,CK(0,0,1));
for(int x=1; x < DIM-1; x++){
target[IX(0,0,x)] = source[IX(DIM-2,DIM-2,x)];
}
}
if(ARR_EXISTS(chunk_mask,2,0,1)){
source = GET_ARR_RAW(neighborArray,CK(2,0,1));
source = GET_ARR(env,neighborArray,CK(2,0,1));
for(int x=1; x < DIM-1; x++){
target[IX(DIM-1,0,x)] = source[IX(1,DIM-2,x)];
}
}
if(ARR_EXISTS(chunk_mask,0,2,1)){
source = GET_ARR_RAW(neighborArray,CK(0,2,1));
source = GET_ARR(env,neighborArray,CK(0,2,1));
for(int x=1; x < DIM-1; x++){
target[IX(0,DIM-1,x)] = source[IX(DIM-2,1,x)];
}
}
if(ARR_EXISTS(chunk_mask,2,2,1)){
source = GET_ARR_RAW(neighborArray,CK(2,2,1));
source = GET_ARR(env,neighborArray,CK(2,2,1));
for(int x=1; x < DIM-1; x++){
target[IX(DIM-1,DIM-1,x)] = source[IX(1,1,x)];
}
@ -823,28 +838,28 @@ static inline void copyNeighborsRaw(
//
if(ARR_EXISTS(chunk_mask,0,1,0)){
source = GET_ARR_RAW(neighborArray,CK(0,1,0));
source = GET_ARR(env,neighborArray,CK(0,1,0));
for(int x=1; x < DIM-1; x++){
target[IX(0,x,0)] = source[IX(DIM-2,x,DIM-2)];
}
}
if(ARR_EXISTS(chunk_mask,2,1,0)){
source = GET_ARR_RAW(neighborArray,CK(2,1,0));
source = GET_ARR(env,neighborArray,CK(2,1,0));
for(int x=1; x < DIM-1; x++){
target[IX(DIM-1,x,0)] = source[IX(1,x,DIM-2)];
}
}
if(ARR_EXISTS(chunk_mask,0,1,2)){
source = GET_ARR_RAW(neighborArray,CK(0,1,2));
source = GET_ARR(env,neighborArray,CK(0,1,2));
for(int x=1; x < DIM-1; x++){
target[IX(0,x,DIM-1)] = source[IX(DIM-2,x,1)];
}
}
if(ARR_EXISTS(chunk_mask,2,1,2)){
source = GET_ARR_RAW(neighborArray,CK(2,1,2));
source = GET_ARR(env,neighborArray,CK(2,1,2));
for(int x=1; x < DIM-1; x++){
target[IX(DIM-1,x,DIM-1)] = source[IX(1,x,1)];
}
@ -854,28 +869,28 @@ static inline void copyNeighborsRaw(
//
if(ARR_EXISTS(chunk_mask,1,0,0)){
source = GET_ARR_RAW(neighborArray,CK(1,0,0));
source = GET_ARR(env,neighborArray,CK(1,0,0));
for(int x=1; x < DIM-1; x++){
target[IX(x,0,0)] = source[IX(x,DIM-2,DIM-2)];
}
}
if(ARR_EXISTS(chunk_mask,1,2,0)){
source = GET_ARR_RAW(neighborArray,CK(1,2,0));
source = GET_ARR(env,neighborArray,CK(1,2,0));
for(int x=1; x < DIM-1; x++){
target[IX(x,DIM-1,0)] = source[IX(x,1,DIM-2)];
}
}
if(ARR_EXISTS(chunk_mask,1,0,2)){
source = GET_ARR_RAW(neighborArray,CK(1,0,2));
source = GET_ARR(env,neighborArray,CK(1,0,2));
for(int x=1; x < DIM-1; x++){
target[IX(x,0,DIM-1)] = source[IX(x,DIM-2,1)];
}
}
if(ARR_EXISTS(chunk_mask,1,2,2)){
source = GET_ARR_RAW(neighborArray,CK(1,2,2));
source = GET_ARR(env,neighborArray,CK(1,2,2));
for(int x=1; x < DIM-1; x++){
target[IX(x,DIM-1,DIM-1)] = source[IX(x,1,1)];
}
@ -889,22 +904,22 @@ static inline void copyNeighborsRaw(
//
if(ARR_EXISTS(chunk_mask,0,0,0)){
source = GET_ARR_RAW(neighborArray,CK(0,0,0));
source = GET_ARR(env,neighborArray,CK(0,0,0));
target[IX(0,0,0)] = source[IX(DIM-2,DIM-2,DIM-2)];
}
if(ARR_EXISTS(chunk_mask,2,0,0)){
source = GET_ARR_RAW(neighborArray,CK(2,0,0));
source = GET_ARR(env,neighborArray,CK(2,0,0));
target[IX(DIM-1,0,0)] = source[IX(1,DIM-2,DIM-2)];
}
if(ARR_EXISTS(chunk_mask,0,2,0)){
source = GET_ARR_RAW(neighborArray,CK(0,2,0));
source = GET_ARR(env,neighborArray,CK(0,2,0));
target[IX(0,DIM-1,0)] = source[IX(DIM-2,1,DIM-2)];
}
if(ARR_EXISTS(chunk_mask,2,2,0)){
source = GET_ARR_RAW(neighborArray,CK(2,2,0));
source = GET_ARR(env,neighborArray,CK(2,2,0));
target[IX(DIM-1,DIM-1,0)] = source[IX(1,1,DIM-2)];
}
@ -912,25 +927,25 @@ static inline void copyNeighborsRaw(
//
if(ARR_EXISTS(chunk_mask,0,0,2)){
source = GET_ARR_RAW(neighborArray,CK(0,0,2));
source = GET_ARR(env,neighborArray,CK(0,0,2));
target[IX(0,0,DIM-1)] = source[IX(DIM-2,DIM-2,1)];
}
if(ARR_EXISTS(chunk_mask,2,0,2)){
source = GET_ARR_RAW(neighborArray,CK(2,0,2));
source = GET_ARR(env,neighborArray,CK(2,0,2));
target[IX(DIM-1,0,DIM-1)] = source[IX(1,DIM-2,1)];
}
if(ARR_EXISTS(chunk_mask,0,2,2)){
source = GET_ARR_RAW(neighborArray,CK(0,2,2));
source = GET_ARR(env,neighborArray,CK(0,2,2));
target[IX(0,DIM-1,DIM-1)] = source[IX(DIM-2,1,1)];
}
if(ARR_EXISTS(chunk_mask,2,2,2)){
source = GET_ARR_RAW(neighborArray,CK(2,2,2));
source = GET_ARR(env,neighborArray,CK(2,2,2));
target[IX(DIM-1,DIM-1,DIM-1)] = source[IX(1,1,1)];
}
}
}

View File

@ -2,33 +2,29 @@ package electrosphere;
import java.io.File;
import java.io.IOException;
import java.io.OutputStream;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;
import java.nio.file.Files;
import java.util.LinkedList;
import java.util.List;
import java.util.Random;
import java.util.Set;
import org.joml.Vector2i;
import org.joml.Vector3i;
import org.lwjgl.glfw.GLFW;
import org.lwjgl.BufferUtils;
import org.lwjgl.PointerBuffer;
import org.lwjgl.system.MemoryUtil;
/**
* Simulates a fluid via opencl
*/
public class FluidSim {
/**
* Load fluid sim library
*/
static {
String osName = System.getProperty("os.name").toLowerCase();
System.out.println(osName);
if(osName.contains("win")){
System.load(new File("./shared-folder/libfluidsim.dll").toPath().toAbsolutePath().toString());
} else {
System.load(new File("./shared-folder/libfluidsim.so").toPath().toAbsolutePath().toString());
}
System.out.println(System.getProperty("user.dir"));
System.load(System.getProperty("user.dir") + "/shared-folder/libfluidsim.dll");
}
public static final int DIM = 18;
@ -44,21 +40,21 @@ public class FluidSim {
// +-------------+ (2,0,0) +---------------> X
//Buffers that contain density for current frame
public ByteBuffer[] density = new ByteBuffer[27];
ByteBuffer[] density = new ByteBuffer[27];
//Buffers that contain new density to add to the simulation
public ByteBuffer[] densityAddition = new ByteBuffer[27];
ByteBuffer[] densityAddition = new ByteBuffer[27];
//Buffers that contain u vector directions
public ByteBuffer[] uVector = new ByteBuffer[27];
ByteBuffer[] uVector = new ByteBuffer[27];
//Buffers that contain v vector directions
public ByteBuffer[] vVector = new ByteBuffer[27];
ByteBuffer[] vVector = new ByteBuffer[27];
//Buffers that contain w vector directions
public ByteBuffer[] wVector = new ByteBuffer[27];
ByteBuffer[] wVector = new ByteBuffer[27];
//Buffers that contain u vector directions to add to the simulation
public ByteBuffer[] uAdditionVector = new ByteBuffer[27];
ByteBuffer[] uAdditionVector = new ByteBuffer[27];
//Buffers that contain v vector directions to add to the simulation
public ByteBuffer[] vAdditionVector = new ByteBuffer[27];
ByteBuffer[] vAdditionVector = new ByteBuffer[27];
//Buffers that contain w vector directions to add to the simulation
public ByteBuffer[] wAdditionVector = new ByteBuffer[27];
ByteBuffer[] wAdditionVector = new ByteBuffer[27];
//The densities for every voxel for the current frame
float[] densityArrayView = new float[DIM * DIM * DIM];
@ -73,15 +69,15 @@ public class FluidSim {
public float[] v0ArrayView = new float[DIM * DIM * DIM];
float[] w0ArrayView = new float[DIM * DIM * DIM];
public int chunkMask = 0;
int chunkMask = 0;
static final float DIFFUSION_CONSTANT = 0.00001f;
static final float VISCOSITY_CONSTANT = 0.00001f;
static final float DIFFUSION_CONSTANT = 0.0f;
static final float VISCOSITY_CONSTANT = 0.0f;
static final int LINEARSOLVERTIMES = 20;
static final float GRAVITY = -1000f;
static final float GRAVITY = -100f;
public void setup(Vector3i offset){
//allocate buffers for this chunk
@ -109,66 +105,56 @@ public class FluidSim {
FloatBuffer vf = vVector[13].asFloatBuffer();
FloatBuffer wf = wVector[13].asFloatBuffer();
Random rand = new Random(1);
//make a cube of water in the center
for(int i = 0; i < DIM; i++){
for(int j = 0; j < DIM; j++){
for(int k = 0; k < DIM; k++){
// if(offset.x == 0 && offset.y == 0 && offset.z == 0){
if(offset.x == 0 && offset.y == 0 && offset.z == 0){
if(
Math.abs(16 - i) < 4 &&
Math.abs(8 - j) < 4 &&
Math.abs(10 - k) < 4
// &&
// i < 17 && i > 0 &&
// j < 17 && j > 0 &&
// k < 17 && k > 0
Math.abs(16 - i) < 5 &&
Math.abs(j) < 5 &&
Math.abs(16 - k) < 5 &&
i < 17 && i > 0 &&
j < 17 && j > 0 &&
k < 17 && k > 0
){
xf.put(1);
uf.put(0.1f);
vf.put(-1);
wf.put(0.1f);
}
else {
uf.put(50);
vf.put(0);
wf.put(0);
} else {
xf.put(0);
uf.put(0);
vf.put(0);
wf.put(0);
}
// } else {
// if(
// Math.abs(0 - i) < 5 &&
// Math.abs(j) < 5 &&
// Math.abs(0 - k) < 5 &&
// i < 17 && i > 0 &&
// j < 17 && j > 0 &&
// k < 17 && k > 0
// ){
// // xf.put(1);
// // uf.put(50);
// // vf.put(0);
// // wf.put(rand.nextFloat() * 0.1f);
// } else {
// xf.put(0);
// uf.put(0);
// vf.put(0);
// wf.put(0);
// }
// }
} else {
if(
Math.abs(0 - i) < 5 &&
Math.abs(j) < 5 &&
Math.abs(0 - k) < 5 &&
i < 17 && i > 0 &&
j < 17 && j > 0 &&
k < 17 && k > 0
){
// xf.put(1);
// uf.put(50);
// vf.put(0);
// wf.put(rand.nextFloat() * 0.1f);
} else {
xf.put(0);
uf.put(0);
vf.put(0);
wf.put(0);
}
}
}
}
}
}
static int i = 0;
static double time = 0;
static double lastTime = 0;
public static void simChunks(FluidSim[][][] simArray, int step, float timestep){
// simArray[0][1][2].density0ArrayView[IX(10,10,3)] = 3.0f;
// simArray[2][1][2].density0ArrayView[IX(10,10,3)] = 3.0f;
// simArray[2][1][0].density0ArrayView[IX(10,10,3)] = 3.0f;
List<FluidSim> chunksToSim = new LinkedList<FluidSim>();
//
//init data for upcoming frame
for(int x = 0; x < simArray.length; x++){
@ -182,24 +168,31 @@ public class FluidSim {
//Performs main fluid simulation logic
//
simArray[x][y][z].writeNewStateIntoBuffers();
//
// add to queue
//
chunksToSim.add(simArray[x][y][z]);
}
}
}
lastTime = GLFW.glfwGetTime();
//
//simulate
simulateWrapper(chunksToSim,0.01f);
//clock
time = time + (GLFW.glfwGetTime() - lastTime);
i++;
if(i == 100){
System.out.println(time / 100.0 * 1000.0);
}
//Vector stage
solveChunkMask(simArray);
addVectorSources(simArray, timestep);
swapAllVectorFields(simArray, timestep);
solveVectorDiffusion(simArray, timestep);
solveProjection(simArray, step, timestep);
swapAllVectorFields(simArray, timestep);
advectVectorsAcrossBoundaries(simArray, timestep);
solveProjection(simArray, step, timestep);
//
//Density stage
addDensity(simArray, timestep);
swapAllDensityArrays(simArray, timestep);
diffuseDensity(simArray, timestep);
swapAllDensityArrays(simArray, timestep);
advectDensity(simArray, timestep);
// mirrorNeighborDensities(simArray, timestep);
//
@ -214,100 +207,6 @@ public class FluidSim {
}
}
}
if(Main.endStep == 0){
System.exit(0);
}
}
//
//
//Management functions
//
//
/**
* Creates a fluid simulation array based on a given dimension set
* @param dimx the x dimension
* @param dimy the y dimension
* @param dimz the z dimension
* @return The array of fluid sim chunks
*/
public static FluidSim[][][] initFluidSim(int dimx, int dimy, int dimz){
FluidSim[][][] simArray = new FluidSim[dimx][dimy][dimz];
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
simArray[x][y][z] = new FluidSim();
simArray[x][y][z].setup(new Vector3i(x,y,z));
}
}
}
//set sim adjacencies
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
FluidSim current = simArray[x][y][z];
for(int i = -1; i < 2; i++){
for(int j = -1; j < 2; j++){
for(int k = -1; k < 2; k++){
if(i == j && j == k && k == 0){
continue;
}
if(
0 <= x + i && x + i < simArray.length &&
0 <= y + j && y + j < simArray[0].length &&
0 <= z + k && z + k < simArray[0][0].length
){
current.setNeighbor(i+1,j+1,k+1,simArray[x+i][y+j][z+k]);
}
}
}
}
}
}
}
return simArray;
}
static void printLayer(FluidSim[][][] simArray, int step, int layer){
if(step == 0){
for(int x = 0; x < DIM; x++){
for(int y = 0; y < DIM; y++){
System.out.printf("%.2f\t",simArray[0][0][0].uArrayView[IX(x,layer,y)]);
}
System.out.println();
}
}
}
private static double sumAllDensity(FluidSim[][][] simArray){
@ -434,37 +333,526 @@ public class FluidSim {
return rVal;
}
/**
* Main simulation function
* @param timestep
*/
private static void simulateWrapper(List<FluidSim> chunks, float timestep){
simulate(chunks,timestep);
}
private static native void simulate(List<FluidSim> chunks, float timestep);
/**
* Dumps this chunk's density values to disk
* @param path the path to dump to
*/
public void dumpToDisk(String path){
OutputStream fileOS = null;
try {
fileOS = Files.newOutputStream(new File(path).toPath());
ByteBuffer density = this.density[13];
while(density.hasRemaining()){
fileOS.write(density.get());
private static void solveChunkMask(FluidSim[][][] simArray){
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
simArray[x][y][z].calculateChunkMaskWrapper();
}
}
fileOS.close();
} catch (IOException e) {
e.printStackTrace();
}
}
private static void addVectorSources(FluidSim[][][] simArray, float timestep){
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
//Add source to all 3 vectors
// add_source(N, u, u0, dt);
// add_source(N, v, v0, dt);
// add_source(N, w, w0, dt);
simArray[x][y][z].addSourceToVectorsWrapper(timestep);
}
}
}
//swap
//u <=> u0 etc for u, v, and w
}
private static void solveVectorDiffusion(FluidSim[][][] simArray, float timestep){
//samples u,v,w,u0,v0,w0
//sets u,v,w
// for(int x = 0; x < simArray.length; x++){
// for(int y = 0; y < simArray[0].length; y++){
// for(int z = 0; z < simArray[0][0].length; z++){
// simArray[x][y][z].copyNeighborsWrapper(1, simArray[x][y][z].uVector);
// simArray[x][y][z].copyNeighborsWrapper(2, simArray[x][y][z].vVector);
// simArray[x][y][z].copyNeighborsWrapper(3, simArray[x][y][z].wVector);
// simArray[x][y][z].copyNeighborsWrapper(1, simArray[x][y][z].uAdditionVector);
// simArray[x][y][z].copyNeighborsWrapper(2, simArray[x][y][z].vAdditionVector);
// simArray[x][y][z].copyNeighborsWrapper(3, simArray[x][y][z].wAdditionVector);
// }
// }
// }
for(int l = 0; l < LINEARSOLVERTIMES; l++){
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
//lin_solve(env, chunk_mask, N, b, x, x0, a, 1+6*a);
//+
//set_bnd(env, chunk_mask, N, b, x);
//for u, v, and w all in 1 shot
simArray[x][y][z].solveVectorDiffuseWrapper(timestep);
}
}
}
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
simArray[x][y][z].setBoundsToNeighborsWrapper(1, simArray[x][y][z].uVector);
simArray[x][y][z].setBoundsToNeighborsWrapper(2, simArray[x][y][z].vVector);
simArray[x][y][z].setBoundsToNeighborsWrapper(3, simArray[x][y][z].wVector);
simArray[x][y][z].copyNeighborsWrapper(1, x, simArray[x][y][z].uVector);
simArray[x][y][z].copyNeighborsWrapper(2, x, simArray[x][y][z].vVector);
simArray[x][y][z].copyNeighborsWrapper(3, x, simArray[x][y][z].wVector);
}
}
}
}
}
private static void solveProjection(FluidSim[][][] simArray, int step, float timestep){
//samples u,v,w
//sets u0,v0
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
simArray[x][y][z].setBoundsToNeighborsWrapper(1, simArray[x][y][z].uVector);
simArray[x][y][z].setBoundsToNeighborsWrapper(2, simArray[x][y][z].vVector);
simArray[x][y][z].setBoundsToNeighborsWrapper(3, simArray[x][y][z].wVector);
simArray[x][y][z].setBoundsToNeighborsWrapper(1, simArray[x][y][z].uAdditionVector);
simArray[x][y][z].setBoundsToNeighborsWrapper(2, simArray[x][y][z].vAdditionVector);
simArray[x][y][z].copyNeighborsWrapper(1, x, simArray[x][y][z].uVector);
simArray[x][y][z].copyNeighborsWrapper(2, x, simArray[x][y][z].vVector);
simArray[x][y][z].copyNeighborsWrapper(3, x, simArray[x][y][z].wVector);
simArray[x][y][z].copyNeighborsWrapper(1, x, simArray[x][y][z].uAdditionVector);
simArray[x][y][z].copyNeighborsWrapper(2, x, simArray[x][y][z].vAdditionVector);
}
}
}
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
// System.out.println("Setup " + x + " " + y + " " + z);
//setup projection across boundaries
//...
//set boundaries appropriately
//...
simArray[x][y][z].setupProjectionWrapper(timestep);
}
}
}
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
simArray[x][y][z].setBoundsToNeighborsWrapper(0, simArray[x][y][z].uAdditionVector);
simArray[x][y][z].setBoundsToNeighborsWrapper(0, simArray[x][y][z].vAdditionVector);
simArray[x][y][z].copyNeighborsWrapper(0, x, simArray[x][y][z].uAdditionVector);
simArray[x][y][z].copyNeighborsWrapper(0, x, simArray[x][y][z].vAdditionVector);
}
}
}
//samples u0, v0
//sets u0
//these should have just been mirrored in the above
//
//Perform main projection solver
for(int l = 0; l < LINEARSOLVERTIMES; l++){
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
//lin_solve(env, chunk_mask, N, b, x, x0, a, 1+6*a);
//for u, v, and w all in 1 shot
simArray[x][y][z].solveProjectionWrapper(timestep);
}
}
}
//be sure to set boundaries to neighbor chunk values where appropriate
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
simArray[x][y][z].setBoundsToNeighborsWrapper(0, simArray[x][y][z].uAdditionVector);
simArray[x][y][z].copyNeighborsWrapper(0, x, simArray[x][y][z].uAdditionVector);
}
}
}
}
//samples u,v,w,u0
//sets u,v,w
//Finalize projection
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
//Subtract curl field from current vector field
//...
simArray[x][y][z].finalizeProjectionWrapper(timestep);
}
}
}
//set boundaries a final time for u,v,w
//...
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
simArray[x][y][z].setBoundsToNeighborsWrapper(1, simArray[x][y][z].uVector);
simArray[x][y][z].setBoundsToNeighborsWrapper(2, simArray[x][y][z].vVector);
simArray[x][y][z].setBoundsToNeighborsWrapper(3, simArray[x][y][z].wVector);
simArray[x][y][z].copyNeighborsWrapper(1, x, simArray[x][y][z].uVector);
simArray[x][y][z].copyNeighborsWrapper(2, x, simArray[x][y][z].vVector);
simArray[x][y][z].copyNeighborsWrapper(3, x, simArray[x][y][z].wVector);
simArray[x][y][z].setBoundsToNeighborsWrapper(1, simArray[x][y][z].uAdditionVector);
simArray[x][y][z].setBoundsToNeighborsWrapper(2, simArray[x][y][z].vAdditionVector);
simArray[x][y][z].setBoundsToNeighborsWrapper(3, simArray[x][y][z].wAdditionVector);
simArray[x][y][z].copyNeighborsWrapper(0, x, simArray[x][y][z].uAdditionVector);
simArray[x][y][z].copyNeighborsWrapper(0, x, simArray[x][y][z].vAdditionVector);
simArray[x][y][z].copyNeighborsWrapper(0, x, simArray[x][y][z].wAdditionVector);
}
}
}
}
private static void mirrorNeighborDensities(FluidSim[][][] simArray, float timestep){
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
simArray[x][y][z].setBoundsToNeighborsWrapper(0, simArray[x][y][z].density);
}
}
}
}
private static void swapAllVectorFields(FluidSim[][][] simArray, float timestep){
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
simArray[x][y][z].swapVectorFields();
}
}
}
//then need to mirror each array as relevant
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
simArray[x][y][z].copyNeighborsWrapper(1, x, simArray[x][y][z].uVector);
simArray[x][y][z].copyNeighborsWrapper(2, x, simArray[x][y][z].vVector);
simArray[x][y][z].copyNeighborsWrapper(3, x, simArray[x][y][z].wVector);
simArray[x][y][z].copyNeighborsWrapper(1, x, simArray[x][y][z].uAdditionVector);
simArray[x][y][z].copyNeighborsWrapper(2, x, simArray[x][y][z].vAdditionVector);
simArray[x][y][z].copyNeighborsWrapper(2, x, simArray[x][y][z].wAdditionVector);
}
}
}
}
private void swapVectorFields(){
ByteBuffer tmp;
//swap x0 <-> x
// tmp = densityAddition;
// densityAddition = density[13];
// density[13] = tmp;
//swap u0 <-> u
for(int i = 0; i < 27; i++){
tmp = uAdditionVector[i];
uAdditionVector[i] = uVector[i];
uVector[i] = tmp;
//swap v0 <-> v
tmp = vAdditionVector[i];
vAdditionVector[i] = vVector[i];
vVector[i] = tmp;
//swap w0 <-> w
tmp = wAdditionVector[i];
wAdditionVector[i] = wVector[i];
wVector[i] = tmp;
}
//...
}
private static void advectVectorsAcrossBoundaries(FluidSim[][][] simArray, float timestep){
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
simArray[x][y][z].setBoundsToNeighborsWrapper(1, simArray[x][y][z].uVector);
simArray[x][y][z].setBoundsToNeighborsWrapper(2, simArray[x][y][z].vVector);
simArray[x][y][z].setBoundsToNeighborsWrapper(3, simArray[x][y][z].wVector);
simArray[x][y][z].setBoundsToNeighborsWrapper(1, simArray[x][y][z].uAdditionVector);
simArray[x][y][z].setBoundsToNeighborsWrapper(2, simArray[x][y][z].vAdditionVector);
simArray[x][y][z].setBoundsToNeighborsWrapper(3, simArray[x][y][z].wAdditionVector);
simArray[x][y][z].copyNeighborsWrapper(1, x, simArray[x][y][z].uVector);
simArray[x][y][z].copyNeighborsWrapper(2, x, simArray[x][y][z].vVector);
simArray[x][y][z].copyNeighborsWrapper(3, x, simArray[x][y][z].wVector);
simArray[x][y][z].copyNeighborsWrapper(1, x, simArray[x][y][z].uAdditionVector);
simArray[x][y][z].copyNeighborsWrapper(2, x, simArray[x][y][z].vAdditionVector);
simArray[x][y][z].copyNeighborsWrapper(3, x, simArray[x][y][z].wAdditionVector);
}
}
}
//samples u,v,w,u0,v0,w0
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
// advect(env, chunk_mask, N, 1, jru, u0, u0, v0, w0, dt);
// advect(env, chunk_mask, N, 2, jrv, v0, u0, v0, w0, dt);
// advect(env, chunk_mask, N, 3, jrw, w0, u0, v0, w0, dt);
//...
simArray[x][y][z].advectVectorsWrapper(timestep);
}
}
}
//mirror neighbor data
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
simArray[x][y][z].setBoundsToNeighborsWrapper(1, simArray[x][y][z].uVector);
simArray[x][y][z].setBoundsToNeighborsWrapper(2, simArray[x][y][z].vVector);
simArray[x][y][z].setBoundsToNeighborsWrapper(3, simArray[x][y][z].wVector);
simArray[x][y][z].copyNeighborsWrapper(1, x, simArray[x][y][z].uVector);
simArray[x][y][z].copyNeighborsWrapper(2, x, simArray[x][y][z].vVector);
simArray[x][y][z].copyNeighborsWrapper(3, x, simArray[x][y][z].wVector);
}
}
}
}
private static void addDensity(FluidSim[][][] simArray, float timestep){
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
//add_source(N, x, x0, dt);
simArray[x][y][z].addDensityWrapper(timestep);
//swap x <=> x0
//swap arrays in java side...
// simArray[x][y][z].swapDensityArrays();
}
}
}
}
private static void swapAllDensityArrays(FluidSim[][][] simArray, float timestep){
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
simArray[x][y][z].swapDensityArrays();
}
}
}
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
simArray[x][y][z].copyNeighborsWrapper(0, x, simArray[x][y][z].density);
simArray[x][y][z].copyNeighborsWrapper(0, x, simArray[x][y][z].densityAddition);
}
}
}
}
private void swapDensityArrays(){
for(int i = 0; i < 27; i++){
ByteBuffer tmp = density[i];
density[i] = densityAddition[i];
densityAddition[i] = tmp;
}
}
private static void diffuseDensity(FluidSim[][][] simArray, float timestep){
for(int l = 0; l < LINEARSOLVERTIMES; l++){
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
//lin_solve(env, chunk_mask, N, b, x, x0, a, 1+6*a);
//+
//set_bnd(env, chunk_mask, N, b, x);
simArray[x][y][z].solveDiffuseDensityWrapper(timestep);
}
}
}
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
simArray[x][y][z].setBoundsToNeighborsWrapper(0, simArray[x][y][z].density);
}
}
}
}
}
private static void advectDensity(FluidSim[][][] simArray, float timestep){
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
//swap x <=> x0 again
// simArray[x][y][z].swapDensityArrays();
//advect density
simArray[x][y][z].advectDensityWrapper(timestep);
}
}
}
}
/**
* The native function call to simulate a frame of fluid
* @param DIM_X
* @param DIM_Y
* @param DIM_Z
* @param x
* @param x0
* @param u
* @param v
* @param w
* @param u0
* @param v0
* @param w0
* @param DIFFUSION_CONSTANT
* @param VISCOSITY_CONSTANT
* @param timestep
*/
private native void simulate(
int DIM_X,
int chunkMask,
ByteBuffer[] x,
ByteBuffer x0,
ByteBuffer[] u,
ByteBuffer[] v,
ByteBuffer[] w,
ByteBuffer[] u0,
ByteBuffer[] v0,
ByteBuffer[] w0,
float DIFFUSION_CONSTANT,
float VISCOSITY_CONSTANT,
float timestep
);
private void calculateChunkMaskWrapper(){
this.chunkMask = this.calculateChunkMask(density);
}
/**
* Calculates the mask of chunk neighbors
* @param densityBuffers The neighbor array
* @return The mask
*/
private native int calculateChunkMask(ByteBuffer[] densityBuffers);
/**
* Add vector values to u, v, and w all at once
*/
private void addSourceToVectorsWrapper(float timestep){
addSourceToVectors(DIM, chunkMask, uVector, vVector, wVector, uAdditionVector, vAdditionVector, wAdditionVector, DIFFUSION_CONSTANT, VISCOSITY_CONSTANT, timestep);
}
private native void addSourceToVectors(int DIM_X, int chunkMask, ByteBuffer[] u, ByteBuffer v[], ByteBuffer w[], ByteBuffer u0[], ByteBuffer v0[], ByteBuffer w0[], float DIFFUSION_CONSTANT, float VISCOSITY_CONSTANT, float timestep);
/**
* Solves u, v, and w diffusion systems of equations
*/
private void solveVectorDiffuseWrapper(float timestep){
solveVectorDiffuse(DIM, chunkMask, uVector, vVector, wVector, uAdditionVector, vAdditionVector, wAdditionVector, DIFFUSION_CONSTANT, VISCOSITY_CONSTANT, timestep);
}
private native void solveVectorDiffuse(int DIM_X, int chunkMask, ByteBuffer[] u, ByteBuffer v[], ByteBuffer w[], ByteBuffer u0[], ByteBuffer v0[], ByteBuffer w0[], float DIFFUSION_CONSTANT, float VISCOSITY_CONSTANT, float timestep);
/**
* Setup projection system
*/
private void setupProjectionWrapper(float timestep){
setupProjection(DIM, chunkMask, uVector, vVector, wVector, uAdditionVector, vAdditionVector, wAdditionVector, DIFFUSION_CONSTANT, VISCOSITY_CONSTANT, timestep);
}
private native void setupProjection(int DIM_X, int chunkMask, ByteBuffer[] u, ByteBuffer v[], ByteBuffer w[], ByteBuffer u0[], ByteBuffer v0[], ByteBuffer w0[], float DIFFUSION_CONSTANT, float VISCOSITY_CONSTANT, float timestep);
/**
* Solve projection system
*/
private void solveProjectionWrapper(float timestep){
solveProjection(DIM, chunkMask, uVector, vVector, wVector, uAdditionVector, vAdditionVector, wAdditionVector, DIFFUSION_CONSTANT, VISCOSITY_CONSTANT, timestep);
}
private native void solveProjection(int DIM_X, int chunkMask, ByteBuffer[] u, ByteBuffer v[], ByteBuffer w[], ByteBuffer u0[], ByteBuffer v0[], ByteBuffer w0[], float DIFFUSION_CONSTANT, float VISCOSITY_CONSTANT, float timestep);
/**
* Does work like subtracting curl from vector field, setting boundaries, etc
*/
private void finalizeProjectionWrapper(float timestep){
finalizeProjection(DIM, chunkMask, uVector, vVector, wVector, uAdditionVector, vAdditionVector, wAdditionVector, DIFFUSION_CONSTANT, VISCOSITY_CONSTANT, timestep);
}
private native void finalizeProjection(int DIM_X, int chunkMask, ByteBuffer[] u, ByteBuffer v[], ByteBuffer w[], ByteBuffer u0[], ByteBuffer v0[], ByteBuffer w0[], float DIFFUSION_CONSTANT, float VISCOSITY_CONSTANT, float timestep);
/**
* Advects vectors
*/
private void advectVectorsWrapper(float timestep){
advectVectors(DIM, chunkMask, uVector, vVector, wVector, uAdditionVector, vAdditionVector, wAdditionVector, DIFFUSION_CONSTANT, VISCOSITY_CONSTANT, timestep);
}
private native void advectVectors(int DIM_X, int chunkMask, ByteBuffer[] u, ByteBuffer v[], ByteBuffer w[], ByteBuffer u0[], ByteBuffer v0[], ByteBuffer w0[], float DIFFUSION_CONSTANT, float VISCOSITY_CONSTANT, float timestep);
/**
* Adds density to the simulation
*/
private void addDensityWrapper(float timestep){
addDensity(DIM, chunkMask, density, densityAddition, timestep);
}
private native void addDensity(int DIM_X, int chunkMask, ByteBuffer[] x, ByteBuffer[] x0, float timestep);
/**
* Solve density diffusion
*/
private void solveDiffuseDensityWrapper(float timestep){
solveDiffuseDensity(DIM, chunkMask, density, densityAddition, uVector, vVector, wVector, DIFFUSION_CONSTANT, VISCOSITY_CONSTANT, timestep);
}
private native void solveDiffuseDensity(int DIM_X, int chunkMask, ByteBuffer[] x, ByteBuffer[] x0, ByteBuffer[] u, ByteBuffer v[], ByteBuffer w[], float DIFFUSION_CONSTANT, float VISCOSITY_CONSTANT, float timestep);
/**
* Solve density diffusion
*/
private void advectDensityWrapper(float timestep){
advectDensity(DIM, chunkMask, density, densityAddition, uVector, vVector, wVector, DIFFUSION_CONSTANT, VISCOSITY_CONSTANT, timestep);
}
private native void advectDensity(int DIM_X, int chunkMask, ByteBuffer[] x, ByteBuffer[] x0, ByteBuffer[] u, ByteBuffer v[], ByteBuffer w[], float DIFFUSION_CONSTANT, float VISCOSITY_CONSTANT, float timestep);
/**
* Sets the bounds of the neighbormap to neighbor values if available
*/
private void setBoundsToNeighborsWrapper(int vectorDir, ByteBuffer[] neighborMap){
setBoundsToNeighbors(DIM, chunkMask, vectorDir, neighborMap);
}
private native void setBoundsToNeighbors(int DIM_X, int chunkMask, int vectorDir, ByteBuffer[] neighborMap);
/**
* Sets the bounds of the neighbormap to neighbor values if available, otherwise doesn't mess with them.
* This is to make sure zeroing out doesn't mess up the sim
*/
private void copyNeighborsWrapper(int vectorDir, int x, ByteBuffer[] neighborMap){
copyNeighbors(DIM, chunkMask, x, vectorDir, neighborMap);
}
private native void copyNeighbors(int DIM_X, int chunkMask, int x, int vectorDir, ByteBuffer[] neighborMap);

View File

@ -2,9 +2,9 @@ package electrosphere;
import java.io.File;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.Scanner;
import java.util.concurrent.TimeUnit;
import org.joml.Vector3i;
@ -17,40 +17,30 @@ import electrosphere.render.Mesh;
*/
public class Main {
static boolean render = false;
public static int endStep = -1;
public static final float TIMESTEP = 0.001f;
public static void main(String args[]){
int dim = 3;
int vdim = 3;
int dim = 5;
int i = 0;
long time = 0;
long lastTime = 0;
Scanner scan = new Scanner(System.in);
try {
if(render){
GLFWContext.init();
GLFWContext.init();
//init shader program
Mesh.initShaderProgram();
}
//init shader program
Mesh.initShaderProgram();
FluidSim[][][] simArray = FluidSim.initFluidSim(dim,vdim,dim);
FluidSim[][][] simArray = initFluidSim(dim,1,dim);
Mesh[][][] meshArray = null;
if(render){
meshArray = initMeshes(dim,vdim,dim,simArray);
}
Mesh[][][] meshArray = initMeshes(dim,1,dim,simArray);
//uncomment this to generate test data
// generateTestData();
while(true){
try {
@ -65,27 +55,23 @@ public class Main {
//
//Simulate
//
FluidSim.simChunks(simArray,i,TIMESTEP);
FluidSim.simChunks(simArray,i,0.01f);
time = time + (System.currentTimeMillis() - lastTime);
//
//Remesh
//
if(render){
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
meshArray[x][y][z].remesh();
}
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
meshArray[x][y][z].remesh();
}
}
}
time = time + (System.currentTimeMillis() - lastTime);
//redraw
if(render){
GLFWContext.redraw(meshArray);
}
GLFWContext.redraw(meshArray);
i++;
if(i == 100){
System.out.println("overall time: " + time / 100.0);
System.out.println(time / 100.0);
}
if(i > 3){
// scan.next();
@ -96,6 +82,45 @@ public class Main {
}
}
private static FluidSim[][][] initFluidSim(int dimx, int dimy, int dimz){
FluidSim[][][] simArray = new FluidSim[dimx][dimy][dimz];
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
simArray[x][y][z] = new FluidSim();
simArray[x][y][z].setup(new Vector3i(x,y,z));
}
}
}
//set sim adjacencies
for(int x = 0; x < simArray.length; x++){
for(int y = 0; y < simArray[0].length; y++){
for(int z = 0; z < simArray[0][0].length; z++){
FluidSim current = simArray[x][y][z];
for(int i = -1; i < 2; i++){
for(int j = -1; j < 2; j++){
for(int k = -1; k < 2; k++){
if(i == j && j == k && k == 0){
continue;
}
if(
0 <= x + i && x + i < simArray.length &&
0 <= y + j && y + j < simArray[0].length &&
0 <= z + k && z + k < simArray[0][0].length
){
current.setNeighbor(i+1,j+1,k+1,simArray[x+i][y+j][z+k]);
}
}
}
}
}
}
}
return simArray;
}
private static Mesh[][][] initMeshes(int dimx, int dimy, int dimz, FluidSim[][][] simArray){
Mesh[][][] meshArray = new Mesh[dimx][dimy][dimz];
for(int x = 0; x < simArray.length; x++){
@ -109,126 +134,4 @@ public class Main {
return meshArray;
}
/**
* Generates test data on disk in the test resources folder
*/
private static void generateTestData(){
//variables that will be used in generating data
int i = 0;
int dim = 1;
int length = 500;
FluidSim[][][] simArray;
int[] dims = new int[]{1,3,5};
int[] lengths = new int[]{1,50,100,500};
render = false;
//clean up existing data
//this is scary recursive file logic, but the innermost callback has a guard to guarantee the file is underneath the testdata path
while(Files.exists(new File("./src/test/resources/testdata").toPath())){
try {
Files.walk(new File("./src/test/resources/testdata").toPath()).forEach(path -> {
Path parent = new File("./src/test/resources/testdata").toPath().toAbsolutePath();
Path child = path.toAbsolutePath();
try {
TimeUnit.MILLISECONDS.sleep(1);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
if(child.startsWith(parent)){
try {
System.out.println("Deleting " + path);
Files.delete(path);
} catch (IOException e) {
System.out.println("Failed to delete " + path);
e.printStackTrace();
}
}
});
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
//create folders to contain test data
try {
Files.createDirectory(new File("./src/test/resources/testdata").toPath());
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
for(int dimIterator = 0; dimIterator < dims.length; dimIterator++){
dim = dims[dimIterator];
try {
Files.createDirectory(new File("./src/test/resources/testdata/" + dim + "by" + dim).toPath());
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
for(int lengthIterator = 0; lengthIterator < lengths.length; lengthIterator++){
length = lengths[lengthIterator];
try {
Files.createDirectory(new File("./src/test/resources/testdata/" + dim + "by" + dim + "/" + length + "steps").toPath());
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
//main data generation loop
for(int dimIterator = 0; dimIterator < dims.length; dimIterator++){
for(int lengthIterator = 0; lengthIterator < lengths.length; lengthIterator++){
//actual main routine to generate data starts here
dim = dims[dimIterator];
length = lengths[lengthIterator];
System.out.println("Generating " + dim + "x" + dim + "x" + dim + " for " + length + " steps");
i = 0;
simArray = FluidSim.initFluidSim(dim,dim,dim);
for(i = 0; i < length; i++){
FluidSim.simChunks(simArray,i,TIMESTEP);
}
for(int x = 0; x < dim; x++){
for(int y = 0; y < dim; y++){
for(int z = 0; z < dim; z++){
simArray[x][y][z].dumpToDisk("./src/test/resources/testdata/" + dim + "by" + dim + "/" + length + "steps/chunk_" + x + "_" + y + "_" + z + "_" + dim + "by" + dim + "Chunk" + length + "Step.data");
}
}
}
for(int x = 0; x < dim; x++){
for(int y = 0; y < dim; y++){
for(int z = 0; z < dim; z++){
byte[] bytes;
try {
bytes = Files.readAllBytes(new File("./src/test/resources/testdata/" + dim + "by" + dim + "/" + length + "steps/chunk_" + x + "_" + y + "_" + z + "_" + dim + "by" + dim + "Chunk" + length + "Step.data").toPath());
ByteBuffer densityBytes = simArray[0][0][0].getDensityBuffer();
i = 0;
while(densityBytes.hasRemaining()){
boolean pass = bytes[i] == densityBytes.get();
if(!pass){
System.err.println("failed to pass!");
}
i++;
}
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
}
}
}
System.exit(0);
}
}

View File

@ -2,6 +2,7 @@ package electrosphere.render;
import java.nio.IntBuffer;
import org.lwjgl.BufferUtils;
import org.lwjgl.glfw.GLFW;
import org.lwjgl.opengl.GL;
import org.lwjgl.opengl.GL44;
@ -37,6 +38,9 @@ public class GLFWContext {
GLFW.glfwMakeContextCurrent(window);
//Maximize it
GLFW.glfwMaximizeWindow(window);
//grab actual framebuffer
int bufferWidth = 0;
int bufferHeight = 0;
try(MemoryStack stack = MemoryStack.stackPush()){
IntBuffer xBuffer = MemoryUtil.memAllocInt(1);
@ -44,6 +48,9 @@ public class GLFWContext {
GLFW.glfwGetFramebufferSize(window, xBuffer, yBuffer);
MemoryUtil.memFree(xBuffer);
MemoryUtil.memFree(yBuffer);
bufferWidth = xBuffer.get();
bufferHeight = yBuffer.get();
}
//

View File

@ -1,8 +1,11 @@
package electrosphere.render;
import java.io.BufferedInputStream;
import java.io.BufferedReader;
import java.io.File;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.nio.FloatBuffer;
import java.nio.IntBuffer;
import java.nio.file.Files;
@ -14,8 +17,11 @@ import java.util.Map;
import org.joml.Matrix4f;
import org.joml.Vector3f;
import org.joml.Vector3i;
import org.lwjgl.BufferUtils;
import org.lwjgl.opengl.GL33;
import org.lwjgl.opengl.GL44;
import org.lwjgl.opengl.GL45;
import org.lwjgl.system.MemoryStack;
import org.lwjgl.system.MemoryUtil;
import electrosphere.FluidSim;
@ -104,6 +110,7 @@ public class Mesh {
FloatBuffer NormalArrayBufferData;
if(normalCount > 0){
NormalArrayBufferData = MemoryUtil.memAllocFloat(normalCount * 3);
float[] temp = new float[3];
for(float normalValue : data.normals){
NormalArrayBufferData.put(normalValue);
}
@ -235,7 +242,8 @@ public class Mesh {
public static void initShaderProgram(){
String vsSrc = "";
try (BufferedReader is = new BufferedReader(Files.newBufferedReader(new File("./src/main/resources/shader.vs").toPath()))){
ClassLoader classloader = Thread.currentThread().getContextClassLoader();
try (BufferedReader is = new BufferedReader(Files.newBufferedReader(new File("C:\\Users\\satellite\\Documents\\fluid-sim\\src\\main\\resources\\shader.vs").toPath()))){
String temp;
while((temp = is.readLine())!=null){
vsSrc = vsSrc + temp + "\n";
@ -246,7 +254,7 @@ public class Mesh {
}
String fsSrc = "";
try (BufferedReader is = new BufferedReader(Files.newBufferedReader(new File("./src/main/resources/shader.fs").toPath()))){
try (BufferedReader is = new BufferedReader(Files.newBufferedReader(new File("C:\\Users\\satellite\\Documents\\fluid-sim\\src\\main\\resources\\shader.fs").toPath()))){
String temp;
while((temp = is.readLine())!=null){
fsSrc = fsSrc + temp + "\n";

View File

@ -10,7 +10,6 @@ vec3 dLDiffuse = vec3(0.5,0.5,0.5);
in vec3 FragPos;
in vec3 Normal;
in vec3 rawPos;
uniform vec3 viewPos;
@ -27,15 +26,7 @@ void main(){
vec3 lightAmount = CalcDirLight(norm, viewDir);
vec3 color = vec3(0.3,0.7,0.9);
if(
rawPos.x < 2 || rawPos.x > 16 ||
rawPos.y < 2 || rawPos.y > 16 ||
rawPos.z < 2 || rawPos.z > 16
){
color = vec3(0.9,0.7,0.3);
}
color = color * lightAmount;
vec3 color = vec3(0.3,0.7,0.9) * lightAmount;
//this final calculation is for transparency
FragColor = vec4(color,1.0);

View File

@ -16,7 +16,6 @@ uniform mat4 projection;
//output buffers
out vec3 Normal;
out vec3 FragPos;
out vec3 rawPos;
@ -30,7 +29,6 @@ void main() {
//push frag, normal, and texture positions to fragment shader
FragPos = vec3(model * FinalVertex);
Normal = mat3(transpose(inverse(model))) * aNormal;
rawPos = aPos;
//set final position with opengl space

View File

@ -1,185 +0,0 @@
import java.io.IOException;
import java.io.InputStream;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import org.junit.Test;
import electrosphere.FluidSim;
import electrosphere.Main;
public class LongRunTests {
// @Test
// public void test5by5Chunk1Step(){
// int dim = 5;
// int maxTimestep = 1;
// System.out.println("TEST: " + dim + "x" + dim + "x" + dim + " for " + maxTimestep + " steps");
// //init chunk array
// FluidSim[][][] simArray = FluidSim.initFluidSim(dim,dim,dim);
// //simulate the chunk
// for(int i = 0; i < maxTimestep; i++){
// FluidSim.simChunks(simArray, i, Main.TIMESTEP);
// }
// for(int x = 0; x < dim; x++){
// for(int y = 0; y < dim; y++){
// for(int z = 0; z < dim; z++){
// InputStream testFileIS = this.getClass().getResourceAsStream("./testdata/" + dim + "by" + dim + "/" + maxTimestep + "steps/chunk_" + x + "_" + y + "_" + z + "_" + dim + "by" + dim + "Chunk" + maxTimestep + "Step.data");
// byte[] bytes;
// try {
// bytes = testFileIS.readAllBytes();
// ByteBuffer fromDiskBuffer = ByteBuffer.allocate(FluidSim.DIM * FluidSim.DIM * FluidSim.DIM * 4);
// fromDiskBuffer.order(ByteOrder.LITTLE_ENDIAN);
// fromDiskBuffer.put(bytes);
// fromDiskBuffer.flip();
// ByteBuffer densityBytes = simArray[x][y][z].getDensityBuffer();
// int i = 0;
// while(densityBytes.hasRemaining()){
// boolean pass = fromDiskBuffer.get() == densityBytes.get();
// assert(pass);
// i++;
// }
// } catch (IOException e) {
// e.printStackTrace();
// assert(false);
// }
// }
// }
// }
// System.out.println("PASSED");
// }
// @Test
// public void test5by5Chunk50Step(){
// int dim = 5;
// int maxTimestep = 50;
// System.out.println("TEST: " + dim + "x" + dim + "x" + dim + " for " + maxTimestep + " steps");
// //init chunk array
// FluidSim[][][] simArray = FluidSim.initFluidSim(dim,dim,dim);
// //simulate the chunk
// for(int i = 0; i < maxTimestep; i++){
// FluidSim.simChunks(simArray, i, Main.TIMESTEP);
// }
// for(int x = 0; x < dim; x++){
// for(int y = 0; y < dim; y++){
// for(int z = 0; z < dim; z++){
// InputStream testFileIS = this.getClass().getResourceAsStream("./testdata/" + dim + "by" + dim + "/" + maxTimestep + "steps/chunk_" + x + "_" + y + "_" + z + "_" + dim + "by" + dim + "Chunk" + maxTimestep + "Step.data");
// byte[] bytes;
// try {
// bytes = testFileIS.readAllBytes();
// ByteBuffer densityBytes = simArray[x][y][z].getDensityBuffer();
// int i = 0;
// while(densityBytes.hasRemaining()){
// boolean pass = bytes[i] == densityBytes.get();
// assert(pass);
// i++;
// }
// } catch (IOException e) {
// e.printStackTrace();
// assert(false);
// }
// }
// }
// }
// System.out.println("PASSED");
// }
// @Test
// public void test5by5Chunk100Step(){
// int dim = 5;
// int maxTimestep = 100;
// System.out.println("TEST: " + dim + "x" + dim + "x" + dim + " for " + maxTimestep + " steps");
// //init chunk array
// FluidSim[][][] simArray = FluidSim.initFluidSim(dim,dim,dim);
// //simulate the chunk
// for(int i = 0; i < maxTimestep; i++){
// FluidSim.simChunks(simArray, i, Main.TIMESTEP);
// }
// for(int x = 0; x < dim; x++){
// for(int y = 0; y < dim; y++){
// for(int z = 0; z < dim; z++){
// InputStream testFileIS = this.getClass().getResourceAsStream("./testdata/" + dim + "by" + dim + "/" + maxTimestep + "steps/chunk_" + x + "_" + y + "_" + z + "_" + dim + "by" + dim + "Chunk" + maxTimestep + "Step.data");
// byte[] bytes;
// try {
// bytes = testFileIS.readAllBytes();
// ByteBuffer densityBytes = simArray[x][y][z].getDensityBuffer();
// int i = 0;
// while(densityBytes.hasRemaining()){
// boolean pass = bytes[i] == densityBytes.get();
// assert(pass);
// i++;
// }
// } catch (IOException e) {
// e.printStackTrace();
// assert(false);
// }
// }
// }
// }
// System.out.println("PASSED");
// }
// @Test
// public void test5by5Chunk500Step(){
// int dim = 5;
// int maxTimestep = 500;
// System.out.println("TEST: " + dim + "x" + dim + "x" + dim + " for " + maxTimestep + " steps");
// //init chunk array
// FluidSim[][][] simArray = FluidSim.initFluidSim(dim,dim,dim);
// //simulate the chunk
// for(int i = 0; i < maxTimestep; i++){
// FluidSim.simChunks(simArray, i, Main.TIMESTEP);
// }
// for(int x = 0; x < dim; x++){
// for(int y = 0; y < dim; y++){
// for(int z = 0; z < dim; z++){
// InputStream testFileIS = this.getClass().getResourceAsStream("./testdata/" + dim + "by" + dim + "/" + maxTimestep + "steps/chunk_" + x + "_" + y + "_" + z + "_" + dim + "by" + dim + "Chunk" + maxTimestep + "Step.data");
// byte[] bytes;
// try {
// bytes = testFileIS.readAllBytes();
// ByteBuffer densityBytes = simArray[x][y][z].getDensityBuffer();
// int i = 0;
// while(densityBytes.hasRemaining()){
// boolean pass = bytes[i] == densityBytes.get();
// assert(pass);
// i++;
// }
// } catch (IOException e) {
// e.printStackTrace();
// assert(false);
// }
// }
// }
// }
// System.out.println("PASSED");
// }
}

View File

@ -1,197 +0,0 @@
import java.io.IOException;
import java.io.InputStream;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import org.junit.Test;
import electrosphere.FluidSim;
import electrosphere.Main;
public class MediumRunTests {
// @Test
// public void test3by3Chunk1Step(){
// int dim = 3;
// int maxTimestep = 1;
// System.out.println("TEST: " + dim + "x" + dim + "x" + dim + " for " + maxTimestep + " steps");
// //init chunk array
// FluidSim[][][] simArray = FluidSim.initFluidSim(dim,dim,dim);
// //simulate the chunk
// for(int i = 0; i < maxTimestep; i++){
// FluidSim.simChunks(simArray, i, Main.TIMESTEP);
// }
// for(int x = 0; x < dim; x++){
// for(int y = 0; y < dim; y++){
// for(int z = 0; z < dim; z++){
// InputStream testFileIS = this.getClass().getResourceAsStream("./testdata/" + dim + "by" + dim + "/" + maxTimestep + "steps/chunk_" + x + "_" + y + "_" + z + "_" + dim + "by" + dim + "Chunk" + maxTimestep + "Step.data");
// byte[] bytes;
// try {
// bytes = testFileIS.readAllBytes();
// ByteBuffer fromDiskBuffer = ByteBuffer.allocate(FluidSim.DIM * FluidSim.DIM * FluidSim.DIM * 4);
// fromDiskBuffer.order(ByteOrder.LITTLE_ENDIAN);
// fromDiskBuffer.put(bytes);
// fromDiskBuffer.flip();
// ByteBuffer densityBytes = simArray[x][y][z].getDensityBuffer();
// int i = 0;
// while(densityBytes.hasRemaining()){
// boolean pass = fromDiskBuffer.get() == densityBytes.get();
// assert(pass);
// i++;
// }
// } catch (IOException e) {
// e.printStackTrace();
// assert(false);
// }
// }
// }
// }
// System.out.println("PASSED");
// }
// @Test
// public void test3by3Chunk50Step(){
// int dim = 3;
// int maxTimestep = 50;
// System.out.println("TEST: " + dim + "x" + dim + "x" + dim + " for " + maxTimestep + " steps");
// //init chunk array
// FluidSim[][][] simArray = FluidSim.initFluidSim(dim,dim,dim);
// //simulate the chunk
// for(int i = 0; i < maxTimestep; i++){
// FluidSim.simChunks(simArray, i, Main.TIMESTEP);
// }
// for(int x = 0; x < dim; x++){
// for(int y = 0; y < dim; y++){
// for(int z = 0; z < dim; z++){
// InputStream testFileIS = this.getClass().getResourceAsStream("./testdata/" + dim + "by" + dim + "/" + maxTimestep + "steps/chunk_" + x + "_" + y + "_" + z + "_" + dim + "by" + dim + "Chunk" + maxTimestep + "Step.data");
// byte[] bytes;
// try {
// bytes = testFileIS.readAllBytes();
// ByteBuffer fromDiskBuffer = ByteBuffer.allocate(FluidSim.DIM * FluidSim.DIM * FluidSim.DIM * 4);
// fromDiskBuffer.order(ByteOrder.LITTLE_ENDIAN);
// fromDiskBuffer.put(bytes);
// fromDiskBuffer.flip();
// ByteBuffer densityBytes = simArray[x][y][z].getDensityBuffer();
// int i = 0;
// while(densityBytes.hasRemaining()){
// boolean pass = fromDiskBuffer.get() == densityBytes.get();
// assert(pass);
// i++;
// }
// } catch (IOException e) {
// e.printStackTrace();
// assert(false);
// }
// }
// }
// }
// System.out.println("PASSED");
// }
// @Test
// public void test3by3Chunk100Step(){
// int dim = 3;
// int maxTimestep = 100;
// System.out.println("TEST: " + dim + "x" + dim + "x" + dim + " for " + maxTimestep + " steps");
// //init chunk array
// FluidSim[][][] simArray = FluidSim.initFluidSim(dim,dim,dim);
// //simulate the chunk
// for(int i = 0; i < maxTimestep; i++){
// FluidSim.simChunks(simArray, i, Main.TIMESTEP);
// }
// for(int x = 0; x < dim; x++){
// for(int y = 0; y < dim; y++){
// for(int z = 0; z < dim; z++){
// InputStream testFileIS = this.getClass().getResourceAsStream("./testdata/" + dim + "by" + dim + "/" + maxTimestep + "steps/chunk_" + x + "_" + y + "_" + z + "_" + dim + "by" + dim + "Chunk" + maxTimestep + "Step.data");
// byte[] bytes;
// try {
// bytes = testFileIS.readAllBytes();
// ByteBuffer fromDiskBuffer = ByteBuffer.allocate(FluidSim.DIM * FluidSim.DIM * FluidSim.DIM * 4);
// fromDiskBuffer.order(ByteOrder.LITTLE_ENDIAN);
// fromDiskBuffer.put(bytes);
// fromDiskBuffer.flip();
// ByteBuffer densityBytes = simArray[x][y][z].getDensityBuffer();
// int i = 0;
// while(densityBytes.hasRemaining()){
// boolean pass = fromDiskBuffer.get() == densityBytes.get();
// assert(pass);
// i++;
// }
// } catch (IOException e) {
// e.printStackTrace();
// assert(false);
// }
// }
// }
// }
// System.out.println("PASSED");
// }
// @Test
// public void test3by3Chunk500Step(){
// int dim = 3;
// int maxTimestep = 500;
// System.out.println("TEST: " + dim + "x" + dim + "x" + dim + " for " + maxTimestep + " steps");
// //init chunk array
// FluidSim[][][] simArray = FluidSim.initFluidSim(dim,dim,dim);
// //simulate the chunk
// for(int i = 0; i < maxTimestep; i++){
// FluidSim.simChunks(simArray, i, Main.TIMESTEP);
// }
// for(int x = 0; x < dim; x++){
// for(int y = 0; y < dim; y++){
// for(int z = 0; z < dim; z++){
// InputStream testFileIS = this.getClass().getResourceAsStream("./testdata/" + dim + "by" + dim + "/" + maxTimestep + "steps/chunk_" + x + "_" + y + "_" + z + "_" + dim + "by" + dim + "Chunk" + maxTimestep + "Step.data");
// byte[] bytes;
// try {
// bytes = testFileIS.readAllBytes();
// ByteBuffer fromDiskBuffer = ByteBuffer.allocate(FluidSim.DIM * FluidSim.DIM * FluidSim.DIM * 4);
// fromDiskBuffer.order(ByteOrder.LITTLE_ENDIAN);
// fromDiskBuffer.put(bytes);
// fromDiskBuffer.flip();
// ByteBuffer densityBytes = simArray[x][y][z].getDensityBuffer();
// int i = 0;
// while(densityBytes.hasRemaining()){
// boolean pass = fromDiskBuffer.get() == densityBytes.get();
// assert(pass);
// i++;
// }
// } catch (IOException e) {
// e.printStackTrace();
// assert(false);
// }
// }
// }
// }
// System.out.println("PASSED");
// }
}

View File

@ -1,202 +0,0 @@
import java.io.IOException;
import java.io.InputStream;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import org.junit.Test;
import electrosphere.FluidSim;
import electrosphere.Main;
/**
* Tests stepping a single chunk by a single frame
*/
public class ShortRunTest {
// @Test
// public void test1by1Chunk1Step(){
// int dim = 1;
// int maxTimestep = 1;
// System.out.println("TEST: " + dim + "x" + dim + "x" + dim + " for " + maxTimestep + " steps");
// //init chunk array
// FluidSim[][][] simArray = FluidSim.initFluidSim(dim,dim,dim);
// //simulate the chunk
// for(int i = 0; i < maxTimestep; i++){
// FluidSim.simChunks(simArray, i, Main.TIMESTEP);
// }
// for(int x = 0; x < dim; x++){
// for(int y = 0; y < dim; y++){
// for(int z = 0; z < dim; z++){
// InputStream testFileIS = this.getClass().getResourceAsStream("./testdata/" + dim + "by" + dim + "/" + maxTimestep + "steps/chunk_" + x + "_" + y + "_" + z + "_" + dim + "by" + dim + "Chunk" + maxTimestep + "Step.data");
// byte[] bytes;
// try {
// bytes = testFileIS.readAllBytes();
// ByteBuffer fromDiskBuffer = ByteBuffer.allocate(FluidSim.DIM * FluidSim.DIM * FluidSim.DIM * 4);
// fromDiskBuffer.order(ByteOrder.LITTLE_ENDIAN);
// fromDiskBuffer.put(bytes);
// fromDiskBuffer.flip();
// ByteBuffer densityBytes = simArray[x][y][z].getDensityBuffer();
// int i = 0;
// while(densityBytes.hasRemaining()){
// boolean pass = fromDiskBuffer.get() == densityBytes.get();
// assert(pass);
// i++;
// }
// } catch (IOException e) {
// e.printStackTrace();
// assert(false);
// }
// }
// }
// }
// System.out.println("PASSED");
// }
// @Test
// public void test1by1Chunk50Step(){
// int dim = 1;
// int maxTimestep = 50;
// System.out.println("TEST: " + dim + "x" + dim + "x" + dim + " for " + maxTimestep + " steps");
// //init chunk array
// FluidSim[][][] simArray = FluidSim.initFluidSim(dim,dim,dim);
// //simulate the chunk
// for(int i = 0; i < maxTimestep; i++){
// FluidSim.simChunks(simArray, i, Main.TIMESTEP);
// }
// for(int x = 0; x < dim; x++){
// for(int y = 0; y < dim; y++){
// for(int z = 0; z < dim; z++){
// InputStream testFileIS = this.getClass().getResourceAsStream("./testdata/" + dim + "by" + dim + "/" + maxTimestep + "steps/chunk_" + x + "_" + y + "_" + z + "_" + dim + "by" + dim + "Chunk" + maxTimestep + "Step.data");
// byte[] bytes;
// try {
// bytes = testFileIS.readAllBytes();
// ByteBuffer fromDiskBuffer = ByteBuffer.allocate(FluidSim.DIM * FluidSim.DIM * FluidSim.DIM * 4);
// fromDiskBuffer.order(ByteOrder.LITTLE_ENDIAN);
// fromDiskBuffer.put(bytes);
// fromDiskBuffer.flip();
// ByteBuffer densityBytes = simArray[x][y][z].getDensityBuffer();
// int i = 0;
// while(densityBytes.hasRemaining()){
// boolean pass = fromDiskBuffer.get() == densityBytes.get();
// assert(pass);
// i++;
// }
// } catch (IOException e) {
// e.printStackTrace();
// assert(false);
// }
// }
// }
// }
// System.out.println("PASSED");
// }
// @Test
// public void test1by1Chunk100Step(){
// int dim = 1;
// int maxTimestep = 100;
// System.out.println("TEST: " + dim + "x" + dim + "x" + dim + " for " + maxTimestep + " steps");
// //init chunk array
// FluidSim[][][] simArray = FluidSim.initFluidSim(dim,dim,dim);
// //simulate the chunk
// for(int i = 0; i < maxTimestep; i++){
// FluidSim.simChunks(simArray, i, Main.TIMESTEP);
// }
// for(int x = 0; x < dim; x++){
// for(int y = 0; y < dim; y++){
// for(int z = 0; z < dim; z++){
// InputStream testFileIS = this.getClass().getResourceAsStream("./testdata/" + dim + "by" + dim + "/" + maxTimestep + "steps/chunk_" + x + "_" + y + "_" + z + "_" + dim + "by" + dim + "Chunk" + maxTimestep + "Step.data");
// byte[] bytes;
// try {
// bytes = testFileIS.readAllBytes();
// ByteBuffer fromDiskBuffer = ByteBuffer.allocate(FluidSim.DIM * FluidSim.DIM * FluidSim.DIM * 4);
// fromDiskBuffer.order(ByteOrder.LITTLE_ENDIAN);
// fromDiskBuffer.put(bytes);
// fromDiskBuffer.flip();
// ByteBuffer densityBytes = simArray[x][y][z].getDensityBuffer();
// int i = 0;
// while(densityBytes.hasRemaining()){
// boolean pass = fromDiskBuffer.get() == densityBytes.get();
// assert(pass);
// i++;
// }
// } catch (IOException e) {
// e.printStackTrace();
// assert(false);
// }
// }
// }
// }
// System.out.println("PASSED");
// }
// @Test
// public void test1by1Chunk500Step(){
// int dim = 1;
// int maxTimestep = 500;
// System.out.println("TEST: " + dim + "x" + dim + "x" + dim + " for " + maxTimestep + " steps");
// //init chunk array
// FluidSim[][][] simArray = FluidSim.initFluidSim(dim,dim,dim);
// //simulate the chunk
// for(int i = 0; i < maxTimestep; i++){
// FluidSim.simChunks(simArray, i, Main.TIMESTEP);
// }
// for(int x = 0; x < dim; x++){
// for(int y = 0; y < dim; y++){
// for(int z = 0; z < dim; z++){
// InputStream testFileIS = this.getClass().getResourceAsStream("./testdata/" + dim + "by" + dim + "/" + maxTimestep + "steps/chunk_" + x + "_" + y + "_" + z + "_" + dim + "by" + dim + "Chunk" + maxTimestep + "Step.data");
// byte[] bytes;
// try {
// bytes = testFileIS.readAllBytes();
// ByteBuffer fromDiskBuffer = ByteBuffer.allocate(FluidSim.DIM * FluidSim.DIM * FluidSim.DIM * 4);
// fromDiskBuffer.order(ByteOrder.LITTLE_ENDIAN);
// fromDiskBuffer.put(bytes);
// fromDiskBuffer.flip();
// ByteBuffer densityBytes = simArray[x][y][z].getDensityBuffer();
// int i = 0;
// while(densityBytes.hasRemaining()){
// boolean pass = fromDiskBuffer.get() == densityBytes.get();
// assert(pass);
// i++;
// }
// } catch (IOException e) {
// e.printStackTrace();
// assert(false);
// }
// }
// }
// }
// System.out.println("PASSED");
// }
}

View File

@ -1,57 +0,0 @@
#version 330 core
out vec4 FragColor;
vec3 color = vec3(0.3,0.7,0.9);
vec3 dLDirection = vec3(0.1,-0.9,0.1);
vec3 dLDiffuse = vec3(0.5,0.5,0.5);
in vec3 FragPos;
in vec3 Normal;
in vec3 rawPos;
uniform vec3 viewPos;
// uniform DirLight dirLight;
// uniform PointLight pointLights[NR_POINT_LIGHTS];
// uniform SpotLight spotLight;
// function prototypes
vec3 CalcDirLight(vec3 normal, vec3 viewDir);
void main(){
vec3 norm = normalize(Normal);
vec3 viewDir = normalize(viewPos - FragPos);
vec3 lightAmount = CalcDirLight(norm, viewDir);
vec3 color = vec3(0.3,0.7,0.9);
if(
rawPos.x < 2 || rawPos.x > 16 ||
rawPos.y < 2 || rawPos.y > 16 ||
rawPos.z < 2 || rawPos.z > 16
){
color = vec3(0.9,0.7,0.3);
}
color = color * lightAmount;
//this final calculation is for transparency
FragColor = vec4(color,1.0);
}
vec3 CalcDirLight(vec3 normal, vec3 viewDir){
vec3 lightDir = normalize(-dLDirection);
// diffuse shading
float diff = max(dot(normal, lightDir), 0.0);
// specular shading
vec3 reflectDir = reflect(-lightDir, normal);
float spec = pow(max(dot(viewDir, reflectDir), 0.0), 0.6);
// combine results
vec3 diffuse = dLDiffuse * diff;
vec3 specular = spec * color;
return diffuse + specular;
}

View File

@ -1,38 +0,0 @@
//Vertex Shader
#version 330 core
//input buffers
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aNormal;
//coordinate space transformation matrices
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;
//output buffers
out vec3 Normal;
out vec3 FragPos;
out vec3 rawPos;
void main() {
//normalize posiiton and normal
vec4 FinalVertex = vec4(aPos, 1.0);
vec4 FinalNormal = vec4(aNormal, 1.0);
//push frag, normal, and texture positions to fragment shader
FragPos = vec3(model * FinalVertex);
Normal = mat3(transpose(inverse(model))) * aNormal;
rawPos = aPos;
//set final position with opengl space
gl_Position = projection * view * model * FinalVertex;
}

Some files were not shown because too many files have changed in this diff Show More