#include #include #include #include #include "includes/utilities.h" #include "includes/chunkmask.h" #define LINEARSOLVERTIMES 10 void diffuse(JNIEnv * env, uint32_t chunk_mask, int N, int b, float * x, float * x0, float diff, float dt); void advect(JNIEnv * env, uint32_t chunk_mask, int N, int b, jobjectArray jrd, float * d0, float * u, float * v, float * w, float dt); void project(JNIEnv * env, uint32_t chunk_mask, int N, jobjectArray jru, jobjectArray jrv, jobjectArray jrw, float * p, float * div); void set_bnd(JNIEnv * env, uint32_t chunk_mask, int N, int b, float * x); void dens_step(JNIEnv * env, uint32_t chunk_mask, int N, jobjectArray jrx, float * x0, jobjectArray jru, jobjectArray jrv, jobjectArray jrw, float diff, float dt); void vel_step(JNIEnv * env, uint32_t chunk_mask, int N, jobjectArray jru, jobjectArray jrv, jobjectArray jrw, float * u0, float * v0, float * w0, float visc, float dt); void lin_solve(JNIEnv * env, uint32_t chunk_mask, int N, int b, float* x, float* x0, float a, float c); /** * The core simulation function */ JNIEXPORT void JNICALL Java_electrosphere_FluidSim_simulate( JNIEnv * env, jobject this, jint DIM_X, jint chunk_mask, jobject jx, jobject jx0, jobject ju, jobject jv, jobject jw, jobject ju0, jobject jv0, jobject jw0, jfloat DIFFUSION_RATE, jfloat VISCOSITY_RATE, jfloat timestep){ jboolean isCopy; // float * x = (*env)->GetDirectBufferAddress(env,jx); float * x0 = (*env)->GetDirectBufferAddress(env,jx0); // float * u = (*env)->GetDirectBufferAddress(env,ju); // float * v = (*env)->GetDirectBufferAddress(env,jv); // float * w = (*env)->GetDirectBufferAddress(env,jw); float * u0 = (*env)->GetDirectBufferAddress(env,ju0); float * v0 = (*env)->GetDirectBufferAddress(env,jv0); float * w0 = (*env)->GetDirectBufferAddress(env,jw0); int N = DIM_X; int i,j,k; vel_step(env, chunk_mask, DIM_X, ju, jv, jw, u0, v0, w0, VISCOSITY_RATE, timestep); dens_step(env, chunk_mask, DIM_X, jx, x0, ju, jv, jw, DIFFUSION_RATE, timestep); } /** * Adds values from a source array to a current frame array (eg more density to the main density array) */ void add_source(int N, float * x, float * s, float dt){ int i; int size=N*N*N; for(i=0; iN+0.5f) x=N+0.5f; i0=(int)x; i1=i0+1; if (y<0.5f) y=0.5f; if (y>N+0.5f) y=N+0.5f; j0=(int)y; j1=j0+1; if (z<0.5f) z=0.5f; if (z>N+0.5f) z=N+0.5f; k0=(int)z; k1=k0+1; s1 = x-i0; s0 = 1-s1; t1 = y-j0; t0 = 1-t1; u1 = z-k0; u0 = 1-u1; if(i0 >= N){ i0 = N - 1; } // if(i0 < 0){ // i0 = 0; // } if(j0 >= N){ j0 = N - 1; } // if(j0 < 0){ // j0 = 0; // } if(k0 >= N){ k0 = N - 1; } // if(k0 < 0){ // k0 = 0; // } if(i1 >= N){ i1 = N - 1; } // if(i1 < 0){ // i1 = 0; // } if(j1 >= N){ j1 = N - 1; } // if(j1 < 0){ // j1 = 0; // } if(k1 >= N){ k1 = N - 1; } // if(k1 < 0){ // k1 = 0; // } d[IX(i,j,k)] = s0*(t0*u0*d0[IX(i0,j0,k0)]+t1*u0*d0[IX(i0,j1,k0)]+t0*u1*d0[IX(i0,j0,k1)]+t1*u1*d0[IX(i0,j1,k1)])+ s1*(t0*u0*d0[IX(i1,j0,k0)]+t1*u0*d0[IX(i1,j1,k0)]+t0*u1*d0[IX(i1,j0,k1)]+t1*u1*d0[IX(i1,j1,k1)]); } } } set_bnd(env, chunk_mask, N, b, d); } /** * The main density step function */ void dens_step(JNIEnv * env, uint32_t chunk_mask, int N, jobjectArray jrx, float * x0, jobjectArray jru, jobjectArray jrv, jobjectArray jrw, float diff, float dt){ float * x = GET_ARR(env,jrx,CENTER_LOC); float * u = GET_ARR(env,jru,CENTER_LOC); float * v = GET_ARR(env,jrv,CENTER_LOC); float * w = GET_ARR(env,jrw,CENTER_LOC); add_source(N, x, x0, dt); SWAP(x0, x); diffuse(env, chunk_mask, N, 0, x, x0, diff, dt); SWAP(x0, x); advect(env, chunk_mask, N, 0, jrx, x0, u, v, w, dt); } /** * The main velocity step function */ void vel_step(JNIEnv * env, uint32_t chunk_mask, int N, jobjectArray jru, jobjectArray jrv, jobjectArray jrw, float * u0, float * v0, float * w0, float visc, float dt){ float * u = GET_ARR(env,jru,CENTER_LOC); float * v = GET_ARR(env,jrv,CENTER_LOC); float * w = GET_ARR(env,jrw,CENTER_LOC); add_source(N, u, u0, dt); add_source(N, v, v0, dt); add_source(N, w, w0, dt); SWAP(u0, u); diffuse(env, chunk_mask, N, 1, u, u0, visc, dt); SWAP(v0, v); diffuse(env, chunk_mask, N, 2, v, v0, visc, dt); SWAP(w0, w); diffuse(env, chunk_mask, N, 3, w, w0, visc, dt); project(env, chunk_mask, N, jru, jrv, jrw, u0, v0); SWAP(u0, u); SWAP(v0, v); SWAP(w0, w); advect(env, chunk_mask, N, 1, jru, u0, u0, v0, w0, dt); advect(env, chunk_mask, N, 2, jrv, v0, u0, v0, w0, dt); advect(env, chunk_mask, N, 3, jrw, w0, u0, v0, w0, dt); project(env, chunk_mask, N, jru, jrv, jrw, u0, v0); } //used for temporary vector storage when appropriate float container[16]; /** * Projects a given array based on force vectors */ void project(JNIEnv * env, uint32_t chunk_mask, int N, jobjectArray jru, jobjectArray jrv, jobjectArray jrw, float * p, float * div){ int i, j, k; __m256 nVector = _mm256_set1_ps(N); __m256 constScalar = _mm256_set1_ps(-1.0/3.0); __m256 zeroVec = _mm256_set1_ps(0); __m256 vector, vector2, vector3; float * u = GET_ARR(env,jru,CENTER_LOC); float * v = GET_ARR(env,jrv,CENTER_LOC); float * w = GET_ARR(env,jrw,CENTER_LOC); for(k=1; kN-1){ for(i=i-8; i < N-1; i++){ x[IX(i,j,k)] = (x0[IX(i,j,k)] + a*(x[IX(i-1,j,k)]+x[IX(i+1,j,k)]+x[IX(i,j-1,k)]+x[IX(i,j+1,k)]+x[IX(i,j,k-1)]+x[IX(i,j,k+1)]))/c; } } } } set_bnd(env, chunk_mask, N, b, x); } } /** * Sets the bounds of the simulation */ void set_bnd(JNIEnv * env, uint32_t chunk_mask, int N, int b, float * target){ int DIM = N; for(int x=1; x < DIM-1; x++){ for(int y = 1; y < DIM-1; y++){ //((x)+(DIM)*(y) + (DIM)*(DIM)*(z)) target[0 + DIM * x + DIM * DIM * y] = b==1 ? -target[1 + DIM * x + DIM * DIM * y] : target[1 + DIM * x + DIM * DIM * y]; target[IX(DIM-1,x,y)] = b==1 ? -target[IX(DIM-2,x,y)] : target[IX(DIM-2,x,y)]; target[IX(x,0,y)] = b==2 ? -target[IX(x,1,y)] : target[IX(x,1,y)]; target[IX(x,DIM-1,y)] = b==2 ? -target[IX(x,DIM-2,y)] : target[IX(x,DIM-2,y)]; target[IX(x,y,0)] = b==3 ? -target[IX(x,y,1)] : target[IX(x,y,1)]; target[IX(x,y,DIM-1)] = b==3 ? -target[IX(x,y,DIM-2)] : target[IX(x,y,DIM-2)]; } } for(int x = 1; x < DIM-1; x++){ target[IX(x,0,0)] = (float)(0.5f * (target[IX(x,1,0)] + target[IX(x,0,1)])); target[IX(x,DIM-1,0)] = (float)(0.5f * (target[IX(x,DIM-2,0)] + target[IX(x,DIM-1,1)])); target[IX(x,0,DIM-1)] = (float)(0.5f * (target[IX(x,1,DIM-1)] + target[IX(x,0,DIM-2)])); target[IX(x,DIM-1,DIM-1)] = (float)(0.5f * (target[IX(x,DIM-2,DIM-1)] + target[IX(x,DIM-1,DIM-2)])); target[IX(0,x,0)] = (float)(0.5f * (target[IX(1,x,0)] + target[IX(0,x,1)])); target[IX(DIM-1,x,0)] = (float)(0.5f * (target[IX(DIM-2,x,0)] + target[IX(DIM-1,x,1)])); target[IX(0,x,DIM-1)] = (float)(0.5f * (target[IX(1,x,DIM-1)] + target[IX(0,x,DIM-2)])); target[IX(DIM-1,x,DIM-1)] = (float)(0.5f * (target[IX(DIM-2,x,DIM-1)] + target[IX(DIM-1,x,DIM-2)])); target[IX(0,0,x)] = (float)(0.5f * (target[IX(1,0,x)] + target[IX(0,1,x)])); target[IX(DIM-1,0,x)] = (float)(0.5f * (target[IX(DIM-2,0,x)] + target[IX(DIM-1,1,x)])); target[IX(0,DIM-1,x)] = (float)(0.5f * (target[IX(1,DIM-1,x)] + target[IX(0,DIM-2,x)])); target[IX(DIM-1,DIM-1,x)] = (float)(0.5f * (target[IX(DIM-2,DIM-1,x)] + target[IX(DIM-1,DIM-2,x)])); } target[IX(0,0,0)] = (float)((target[IX(1,0,0)]+target[IX(0,1,0)]+target[IX(0,0,1)])/3.0); target[IX(DIM-1,0,0)] = (float)((target[IX(DIM-2,0,0)]+target[IX(DIM-1,1,0)]+target[IX(DIM-1,0,1)])/3.0); target[IX(0,DIM-1,0)] = (float)((target[IX(1,DIM-1,0)]+target[IX(0,DIM-2,0)]+target[IX(0,DIM-1,1)])/3.0); target[IX(0,0,DIM-1)] = (float)((target[IX(0,0,DIM-2)]+target[IX(1,0,DIM-1)]+target[IX(0,1,DIM-1)])/3.0); target[IX(DIM-1,DIM-1,0)] = (float)((target[IX(DIM-2,DIM-1,0)]+target[IX(DIM-1,DIM-2,0)]+target[IX(DIM-1,DIM-1,1)])/3.0); target[IX(0,DIM-1,DIM-1)] = (float)((target[IX(1,DIM-1,DIM-1)]+target[IX(0,DIM-2,DIM-1)]+target[IX(0,DIM-1,DIM-2)])/3.0); target[IX(DIM-1,0,DIM-1)] = (float)((target[IX(DIM-1,0,DIM-2)]+target[IX(DIM-2,0,DIM-1)]+target[IX(DIM-1,1,DIM-1)])/3.0); target[IX(DIM-1,DIM-1,DIM-1)] = (float)((target[IX(DIM-1,DIM-1,DIM-2)]+target[IX(DIM-1,DIM-2,DIM-1)]+target[IX(DIM-1,DIM-1,DIM-2)])/3.0); }