diff --git a/data/sentence_function/greetings.txt b/data/sentence_function/greetings.txt deleted file mode 100644 index 83fa01b..0000000 --- a/data/sentence_function/greetings.txt +++ /dev/null @@ -1,3 +0,0 @@ -Hello -Hi -Howdy \ No newline at end of file diff --git a/data/sentence_function/labels.txt b/data/sentence_function/labels.txt deleted file mode 100644 index e69de29..0000000 diff --git a/data/sentence_function/sentences.txt b/data/sentence_function/sentences.txt deleted file mode 100644 index e69de29..0000000 diff --git a/data/tokens.txt b/data/tokens.txt deleted file mode 100644 index db2b8f0..0000000 --- a/data/tokens.txt +++ /dev/null @@ -1,3 +0,0 @@ -self -i -I \ No newline at end of file diff --git a/src/main/java/org/studiorailgun/sim/space/Location.java b/src/main/java/org/studiorailgun/sim/space/Location.java index d28f51f..e3a11ba 100644 --- a/src/main/java/org/studiorailgun/sim/space/Location.java +++ b/src/main/java/org/studiorailgun/sim/space/Location.java @@ -37,7 +37,9 @@ public class Location { * Describes the location */ public void describe(){ - System.out.println("A " + type); + System.out.println("You are in a " + this.type); + System.out.println("There are " + chars.size() + " people in the " + this.type); + System.out.println("There are " + items.size() + " items in the " + this.type); } /** diff --git a/src/main/python/sim/command_cat.py b/src/main/python/sim/command_cat.py index edde3f8..0e32149 100644 --- a/src/main/python/sim/command_cat.py +++ b/src/main/python/sim/command_cat.py @@ -41,7 +41,7 @@ embedding_dim: int = 128 epochs: int = 50 # Maximum size of the vocab for this layer -max_tokens: int = 5000 +max_tokens: int = 2000 # (Only valid in INT mode) If set, the output will have its time dimension padded or truncated to exactly output_sequence_length values output_sequence_length: int = 4 @@ -128,7 +128,7 @@ model: Sequential = Sequential([ keras.Input(shape=(1,), dtype=tf.string), textVec, Embedding(max_features + 1, embedding_dim), - Bidirectional(LSTM(256)), + Bidirectional(LSTM(128)), Dense(64, activation='relu'), Dense(num_classes, activation='sigmoid') ])